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Abstract

The problem of minimizing a linear function over a convex set is many
times algorithmically simpler and more efficient than its non-linear convex
counterpart. Examples include polytopes that arise in combinatorial opti-
mization problems, certain sets of matrices with bounded singular values,
and balls induced by p-norms, and generalizations of.

This phenomena motivates the computational model of convex optimiza-
tion and online learning using a linear optimization oracle. In this compu-
tational model we give several new results that improve over the previous
state-of-the-art:

1. We present a variant of the conditional gradient method, a first-order
method for constrained smooth minimization using a linear optimiza-
tion oracle, that converges exponentially fast when the convex set is a
polytope and the objective function is strongly convex. This gives an
exponential improvement in convergence rate over previous results.

2. Based on the machinery developed to derive the above result, we derive
a linear optimization-based algorithm with optimal regret for online
convex optimization, in case the feasible set is a polytope. This resolves
open questions posed by Kalai and Vempala, and Hazan and Kale, in
this important case. The new online algorithm also gives rise to linear
optimization-based algorithms for non-smooth and stochastic convex
optimization over polytopes, with the same rates as projection-based
first-order methods in terms of the accuracy parameter.

3. We show that the vanilla conditional gradient algorithm converges at
an accelerated rate (quadratic improvement with respect to the stan-
dard, previously known, rate) when applied to smooth and strongly
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convex optimization over strongly convex sets, which include various
balls induced by p-norms, and generalizations of.

4. We present a linear optimization-based online algorithm for a natu-
ral online extension of the fundamental leading eigenvector problem
from numerical linear algebra. In contrast to previous linear oracle-
based algorithms, the new algorithm i) enjoys a regret bound with a
much more favourable dependency on the dimension, and ii) requires
computations that depend only on the sparsity of the data and not ex-
plicitly on the dimension. We also present a simpler and more efficient
algorithm for the easier stochastic version of the problem.
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Chapter 1

Introduction

This thesis presents algorithms for optimization problems that fall into one
of the following two paradigms: convex optimization or online learning.
Convex optimization requires little introduction. It has a very rich litera-
ture that was developed in the past several decades and has seen numerous
applications in almost every field of science and engineering. Online learn-
ing is a relatively new optimization paradigm that has emerged about two
decades ago and has since then established itself as a powerful framework for
modeling various prediction, decision-making, and optimization problems of
a certain repetitive nature, with deep connections to game theory, statistical
learning, and convex optimization.

There are very strong connections between these two paradigms: online
learning has borrowed many tools from the rich convex optimization toolbox,
and in turn, many algorithms for convex optimization that were developed
in recent years, are based on tools and insights from online learning.

In both paradigms, a major body of work was dedicated over the years to
develop algorithms that are, at a high-level, optimal in terms of the amount
of information they require on the objective function, in order to guarantee
a certain bound on their performance. However, in many cases of interest,
especially in high-dimensional settings, these algorithms are not practically
efficient. The reason for this inefficiency is that while these algorithms are
designed to be optimal with respect to one measure (i.e. information on
the objective), they overlook certain computational aspects which are many
times critical. To make this argument more concrete: these algorithms as-
sume the availability of an oracle that, by it self, solves a certain convex op-
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timization problem, known as the projection. Implementing this projection
oracle is many times computationally prohibitive on large scale problems.

The unifying theme of the algorithms presented in this thesis is that
they exchange the computationally-expensive projection oracle, with a po-
tentially much efficiently-implementable oracle, and thus we refer to them
as projection-free algorithms. In particular, they assume only an oracle for
linear optimization over the feasible set.

In the remaining of this chapter we extend the above discussion. The ea-
ger reader already familiar with first-order methods for convex optimization
and online learning, can skip the remaining of this chapter and go straight
ahead to the following chapters since each chapter is self-contained and can
be read independently of the others.

1.1 Convex Optimization and First-order Methods

In this thesis we consider convex optimization in the following form:

min
x∈K

f(x), (1.1)

where f : Rn → R is a convex function and K ⊆ Rn is a convex set. For
ease of presentation we are going to assume throughout this introductory
chapter, unless stated otherwise, that f is differential everywhere in K 1.

Given a tolerable-error parameter ϵ, we are looking for a feasible point
xϵ ∈ K such that

f(xϵ)−min
x∈K

f(x) ≤ ϵ.

Under relatively mild assumptions, it is possible to find such xϵ in poly-
nomial time via methods such as the Ellipsoid method [39], Interior-Point
methods [73] and Random-Walk methods [57]. However, these methods use
computationally-expensive iterations in terms of run-time and memory re-
quirements which tend to be impractical when the dimension n is very large.
Indeed in recent years, due to the data-explosion phenomena, there is a grow-
ing interest in solving optimization problems that involve vast amounts of

1the case in which f is not differential only affects some of the technical details but not
the “big picture” we are trying to convey in this introduction.
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data for purposes of massive data-analysis. It is for this reason that in re-
cent years first-order methods, i.e. algorithms that access the function f

only through an oracle that given a point x ∈ Rn, returns the function value
and its first derivative at x, that is f(x),∇f(x), with computationally-cheap
iterations became the method-of-choice for coping with large scale convex
optimization problems 2.

1.1.1 The unconstrained case

Suppose f is given by a “black-box” first-order oracle Of : K → R×Rn that
given a point x ∈ K returns the tuple (f(x),∇f(x)). In case the feasible set
K is simply the entire space Rn, a natural way to use Of is to produce a
sequence of iterates {xt}∞t=1 such that

xt+1 ← xt − ηt∇f(xt), (1.2)

where {ηt}∞t=1 is a sequence of non-negative real scalars, and x1 is set to some
arbitrary point in Rn. This simple update rule is known as gradient descent.
Indeed one can show that, under various assumptions on f(x), there exists
a choice for {ηt}∞t=1 and a corresponding value Tϵ such that for every t ≥ Tϵ
it holds that f(xt) −minx∈K f(x) ≤ ϵ. For instance we bring the following
theorem, a proof of which can be found for instance in [12].

Theorem 1. Suppose that f(x) is twice differential everywhere in Rn and
it holds for any x ∈ Rn that αI ⪯ ∇2f(x) ⪯ βI, where I is the identity
matrix in Rn and A ⪯ B means that for any vector v, v⊤Av ≤ v⊤Bv,
and β ≥ α > 0. Then, there exists a choice for {ηt}∞t=1 such that Tϵ =

O
(
β
α log((f(x1)− f(x∗))/ϵ)

)
, where x∗ := argminx∈K f(x) (which in this

case is unique).

The fact that f is accessed only through the oracle Of has the huge
advantage that it encapsulates the difficulty of representing f or computing
its derivatives, and hence allows to design universal methods that assume
only very little on the function f , which is very different from the ad-hoc

2we intentionally add the requirement of computationally-cheap iterations since the
Elliposid method can also be viewed as a first-order method, however, both the run-time
of a single iteration and the number of iterations to convergence scale like n2, which
justifies its reputation is inefficient in practice.
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approach vastly used for combinatorial optimization problems in computer
science, where each specific problem usually requires its own algorithm and
analysis. The disadvantage is of course that now we cannot analyze the
complexity of the algorithm using the standard methodology of computer
science, i.e. counting the number of arithmetic operations. Instead, in
this oracle model, the natural way to measure the efficiency of a method is
according to the maximal number of calls it needs to issue to the oracle Of
in order to reach a point xϵ, which for the update-step given in Eq. (1.2),
just translates to a worst-case upper bound on Tϵ.

Indeed much research was devoted in the past decades to develop first-
order methods that optimize this complexity measure, and today we have
optimal algorithms (i.e. their worst-case complexity matches known lower-
bounds on the complexity of, roughly speaking, any reasonable first order
method), under various assumptions on the function f(x) [71]. One such
optimal algorithm is the accelerated gradient method developed by Nesterov
[71] which uses a simple, yet highly non-trivial, modification of the update
step in Eq. (1.2), and improves the bound on the number of iterations Tϵ
given in Theorem 1 to Tϵ = Õ

(√
β
α log((f(x1)− f(x∗))/ϵ)

)
, i.e. the factor

β/α is improved to
√
β/α, which is critical in certain settings, and in fact

tight.

1.1.2 The constrained case

Things become more complicated when the feasible set K is not the entire
space Rn, but only a subset of it, which we will assume is closed and compact.
Observe that now the simple gradient descent rule given in Eq. (1.2) cannot
be used, since nothing is keeping the iterate xt from stepping outside of
K. There is a conceptually simple solution to this problem given by the
following modified update step:

xt+1 ← argmin
x∈K
∥x− [xt − ηt∇f(xt)]∥2. (1.3)

That is, xt+1 is produced by applying the update rule (1.2), which might re-
sult in an infeasible point, and then taking the next iterate to be the feasible
point closest to it in Euclidean distance. The computation argminx∈K ∥x− y∥2
is called the projection of the point y onto the set K.
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We focus our discussion here on the Euclidean setting, i.e. we measure
distances according to the ℓ2 norm which agrees with the update step in
(1.3). There is interest in certain settings to use other norms, which re-
sults in update rules that are different from (1.3), such as the celebrated
mirror descent method [11] however, as a rule of thumb, in these cases the
iteration-complexity of the resulting method is worse than in the Euclidean
setting. Since our claim is that even computing the Euclidean projection is
practically inefficient many times, we restrict our discussion to the Euclidean
setting.

Note that in terms of complexity, the rule in Eq. (1.3) amounts to a
single call to the oracle Of and minimizing a single quadratic function over
the feasible set, which is by itself, a convex optimization problem.

As a rule of thumb, the same convergence rates that are attainable for
the unconstrained case using the update-rule (1.2) and its variants (such as
Nesterov’s accelerated method) also apply in the constrained setting when
we add the projection, as done in the update-rule given in (1.3). For instance,
Theorem 1 still holds when the iterates are generated according to (1.3)
instead of (1.2).

Computing projections to convex sets

Since the overall complexity of the method described by (1.3) is affected
by the complexity of solving the projection problem onto K, we now survey
several important convex sets that arise both in theory and applications and
discuss the efficiency of computing the projection.

The Euclidean ball Computing the projection to a Euclidean ball is
trivial. Assuming w.l.o.g. that the ball is centered at the origin and has
unit radius, the projection of a point y ∈ Rn onto the ball is given by
Πball(y) =

y
max{1,∥y∥2} , which could be carried out in time that is linear in

the number of non-zero entries in y.

The hypercube The n-dimensional hypercube is the convex hull of the
set of points {0, 1}n. Computing the projection to the hypercube is also
trivial since it amounts to projecting each coordinate in a vector y indepen-
dently of the others. That is [Πcube(y)](i) = max{0,min{1, yi}}. Again, the
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projection in this case could be carried out in linear time in the number of
non-zeros in y.

The unit simplex and the ℓ1-ball The unit simplex in Rn is the convex
hull of all standard basis vectors in Rn, which is also the set of all dis-
tributions over n elements. The ℓ1-ball, which we assume w.l.o.g. has unit
radius, is simply the set {x ∈ Rn |

∑n
i=1 |xi| ≤ 1}. Computing the projection

of a vector y onto the simplex and the ℓ1-ball, denoted here by Πsimplex(y),
Πℓ1−ball(y), admits a non-trivial thresholding scheme which could be imple-
mented in O(n log(n)) time [24].

Polytopes Polytopes are one of the most important family of convex sets.
Consider the polytope P = {x ∈ Rn |Ax ≤ b} for some m × n matrix A

and b ∈ Rm. In general, the problem of projection onto a polytope P could
be formulated as a conic quadratic programming problem (CQP) [11], which
can in turn be solved via a state-of-the-art interior point method. However,
the running time IP for CQP is dominated by

√
mn(n2+m), which is highly

impractical for large scale problems.
Things get worse for polytopes for which the number of constraints is

not polynomial in the dimension n, and thus even IP methods cannot be
used. This is for instance the case for the perfect matching polytope [77].
In this case other methods such at the Ellipsoid method may be used to
compute the projection. However, the inherent complexity of the Ellipsoid
method is O(n4), excluding the time required to generate separating hy-
perplanes (which could be carried out in polynomial time for this polytope
[79]), which is again inefficient for large scale instances. A similar case arises
when considering the polytopes of matroids (see [79]), which are naturally
described by exponentially many constraints, and thus one needs to use the
Ellipsoid method for computing the projection.

For some non-trivial polytopes there exists tailored ad-hoc methods for
computing the projection, such as the method presented in [88], which can
be used to compute the projection onto flow-related polytopes (i.e. convex
hull of fesible flows in a graph) in strongly polynomial time. However, here
the running time is Õ(n4), where n is the number of edges in the graph,
which is again not practical in large scale.
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The spectrahedron and the nuclear-ball The spectrahedron, a certain
matrix-generalization of the unit simplex, is the set of all positive semidefi-
nite n×n matrices (i.e. real symmetric matrices with non-negative eigenval-
ues) with unit trace (i.e. sum of elements along the main diagonal is exactly
1). For m×n matrices, where w.l.o.g. m ≤ n, the nuclear norm-ball of unit
radius is the set of all m × n matrices whose vector of singular values has
ℓ1 norm at most 1 (i.e. the singular values vector is in the m-dimensional
unit ℓ1 ball). These sets arises in many problems involving matrices such as
matrix completion [76, 75, 53] and semidefinite optimization [45]. Projection
to the spectrahderon (nuclear-ball) is closely related to the projection onto
the simplex (ℓ1-ball). The resulting matrix retains the eigenvectors (left
and right singular vectors) of the original matrix, and the vector of eigen-
values (singular values) is projected onto the simplex (ℓ1-ball). Since, as
follows, one needs the full singular vector decomposition of a matrix in order
to project it onto either one of these sets, the complexity is O(n3) for the
spectrahedron, and O(m2n) for the nuclear-ball. In both cases the run-time
is superlinear in the dimension, and hence not practical in very large scale.

The picture that is hopefully clear from the above survey is that, while
computing the projection is very efficient for simple convex sets such as the
ball, hypercube, simplex (i.e. could be carried out in linear or nearly linear
time), it is highly inefficient for more involved, yet highly important, convex
sets such as polytopes and certain sets of matrices, when the dimension is
high. Thus, even in cases in which implementing the first-order oracle Of is
very efficient, which is the case in many important applications, computing
the projection may render the overall method impractical.

1.2 Online Learning and Online Convex Optimiza-
tion

Online learning is a general optimization problem that takes the form of
the following repeating game: on each round of the game, a decision maker
is required to choose an action from a fixed set of actions. Then, a loss
function, mapping each possible action to a real scalar, is revealed, and the
decision maker incurs the loss of his action. This interaction repeats itself for
a finite number of rounds. The emphasis in this game is that on each round,
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when choosing his action, the decision maker has basically no knowledge on
the loss function that is going to be revealed and assign loss to his action.
In particular, it could be the case that the loss function is chosen by an
adversary according to the action of the decision maker, with the intent of
making him suffer a large loss at this round of the game. Thus, this is a
worst-case limited-information optimization problem.

An important variant is known as the “bandit” setting (as opposed to
the standard “full-information” setting we have just described), in which, on
each round, the loss function is not revealed, but only the loss of the action
chosen by the decision maker on that round.

Perhaps the most important and well-studied class of problems that fall
into the paradigm of online learning, is known as online convex optimization
(OCO), in which the set of actions of the decision maker is a convex set in
some linear space (and thus an action corresponds to a point in the set),
and the loss functions revealed are also convex.

Because the decision-maker has no knowledge on the loss function that is
about to be reveled when making his choice on each round, intuitively, there
is no hope for him to play optimally, i.e. compete in terms of the total loss
with the best sequence of T actions in a game of overall T rounds. Instead,
the standard goal is to compete with an easier yet still powerful benchmark:
the best fixed action in hindsight. This performance measure is known as
the regret.

The standard text on online learning is [14]. For a more recent one see
[80].

1.2.1 Formal definition of OCO

Since in the context of online learning we will mostly consider problems
within the subclass of OCO, we are going to focus on the mathematical
formulation of OCO.

We consider a repeated game of T rounds, where on each round t, the
decision maker is required to choose a point xt ∈ K, where K ⊂ Rn is a
fixed compact and convex set. After choosing xt, a loss function ft : Rn →
R is revealed, and the decision maker incurs the loss ft(xt). In the full-
information setting, at the end of the round, the decison maker gains full
knowledge of ft(x). On the contrary, in the “bandit” setting, the decision
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maker only learns the value ft(xt) and does not gain any other knowledge
on ft(x). The goal of the decision maker is to minimize the regret which is
formally given by

regretT (x1, x2, ..., xT ) :=
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

In words: the decision maker wishes to minimize the difference between
his cumulative loss and the cumulative loss of the best fixed point in K
(throughout this work we will simply write regretT , as the sequence of plays
x1, ..., xT to which it refers will be clear from context).

Most importantly, the decision maker is considered successful if he can
guarantee regret that grows as a sublinear function of T , i.e. the ratio
regretT /T is strictly decreasing in T . In this case, indeed when T → ∞,
the average loss of the decision maker per round is at most that of the
best fixed action in hindsight. It is for this reason, that when designing
algorithms for OCO (and online learning in general), the primary concern
is the dependence of the worst-case regret on the length of the game T .

1.2.2 Applications

We now briefly overview some examples of optimization problems that fall
into the framework of online learning and OCO.

Predicting with expert advise Perhaps the most well-known online
learning problem, is the problem of predicting with expert advise. In this
problem, a decision maker has access to n experts. On each round of the
game the decision maker must choose one of these experts. After making his
choice, a loss vector that maps each expert to a loss in the interval [0, 1] is
revealed, and the decision maker incurs the loss of the expert he has chosen.
The goal here is to perform in the long-run nearly as well as the best fixed
expert in hindsight.

This problem is easily modelled in the setting of OCO: each expert i is
mapped to the ith standard basis vector in Rn, ei, and the convex set K
is taken to be the convex-hull of {ei}ni=1 which is also known as the unit
simplex. Given the vector of losses on round t, denoted by ℓt ∈ Rn, the loss
function for round t is naturally defined to be ft(x) = x ·ℓt. Note that in this
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formalism, the action of the decision maker on round t, xt, is not a single
expert, but rather the distribution over the experts. However, by choosing
expert i with probability xt(i) we can make sure that the decision maker
chooses a single expert while ensuring that the expected loss on round t will
be the same as playing the distribution xt (it is important to note however
that here we assume that the loss vector ℓt is chosen independently of the
randomness used in order to sample from xt).

The important “bandit” variant of the problem, known as the adver-
sarial multi-armed bandit problem, has also received much attention in the
literature. See the seminal work [6].

Online shortest path Let G be a directed graph with n vertices and m
edges. Let s, t be two unique vertices which we refer to as the source and
the target. On each round of the online shortest path problem, the decision
maker is required to choose a path in G leading from s to t. Then, each edge
is assigned a weight in the interval [0, 1], and the decision maker incurs loss
that equals the sum of weights along the path he has chosen. The goal is
again to perform in the long-run nearly as well as the best fixed s− t path
in the graph in hindsight.

This problem could be easily reduced to the problem of predicting with
expert advise: we can map each simple s− t path in G to an expert, and the
loss of each expert on round t will be the weight of the path that corresponds
to this expert. However, since the number of paths may be exponential in
the number of edges, this leads to inefficient algorithms.

This problem could be modelled directly in the setting of OCO as follows:
we map each simple s− t path to its identifying vector in {0, 1}m (i.e. there
is 1 in the ith entry of the vector if and only if the ith edge in the graph
is part of this path), and then take the convex set K to be the convex-hull
of all identifying vectors (this is also known as the unit flow polytope). If
we denote by ℓt ∈ Rm the vector of edge-weights on time t, then again the
loss function could be written as ft(x) = x · ℓt, which is again just a linear
function. Note that now both vectors xt, ℓt are in Rm, which is an efficient
representation in the natural parameters of the problem m,n. As in the
previous example, we need to note that now the decision on time t is not
a path, but rather an implicit distribution over paths, which in turn is a
unit flow from s to t. Such an implicit distribution could be decomposed
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in polynomial time to an explicit distribution over at most m s − t paths,
and thus, as before, we can use this distribution to randomly choose a path,
while incurring the same loss in expectation.

For a “bandit” variant of the problem see [7].

Online Principal Component Analysis In the fundamental problem
of Principal Component Analysis (PCA), given a set of vectors x1, x2, ..., xT
in Rn and an integer k ∈ [n], we are interested in finding a rank-k projection
matrix, i.e. a matrix W ∈ Rn×n such that W 2 = W , that minimizes the
quantity

∑T
t=1 ∥xt −Wxt∥22. That is, we wish to find k directions is space

such that the projection of the data onto these directions minimizes the
reconstruction error.

In the online learning version of this problem [91], the vectors x1, ..., xT
arrive sequentially. On round t, the decision maker chooses a rank-k pro-
jection matrix Wt ∈ Rn×n, and then the vector xt is revealed and the loss
incurred is ∥xt −Wtxt∥22. The goal here is to compete with the best fixed
projection matrix in hindsight, which is just given by the offline PCA over
the entire data x1, ..., xT .

The loss function in this setting is clearly ft(W ) = ∥xt −Wxt∥22, i.e. the
reconstruction error of xt when using the projection matrix W . However,
as in previous examples, the set of all rank-k n × n projection matrices is
not convex. Again, this difficulty is resolved by taking K to be the convex
hull of all such matrices. It can be shown that K is exactly the set of all
n× n positive semidefinite matrices with sum of eigenvalues bounded by k
and largest eigenvalue bounded by 1. Moreover, given a matrix in K, it is
possible in turn to decompose it into to a convex combination of at most
n rank-k projection matrices using its eigendecomposition [91]. Thus, as
before, we can use this decomposition to randomly sample a single matrix
without changing the loss in expectation.

Online Portfolio Selection In the online portfolio selection problem [20,
1], we are given a set of n financial assets in which we can invest our wealth.
At each round of the repeated game, the decision maker is required to spread
his wealth among these n assets, formally by choosing a distribution that
assigns to each asset the fraction of wealth to be invested in it. After making
his choice, a vector of returns that prescribes the return of each asset is

13



revealed, and the wealth of the decision maker is changed according to his
chosen distribution and the vector of returns, and the game continuous to
a new round. Two important remarks here are: i) the selected portfolio
is rebalancing, i.e. the decision maker sells his entire investments at the
beginning of each new trading round and then uses all of his wealth to re-
buy assets. This is true even if his portfolio does not change from one round
to another, and ii) in this simplified model we overlook any transaction costs
for buying and selling assets and we just assume they are 0.

Since the decision maker action is a distribution over the n assets, the
feasible set in this problem is naturally the unit simplex in Rn. To keep track
on the change in the wealth of the decision maker during trading rounds, the
loss funtion on round t is taken to be ft(x) = − log(x · rt), where rt ∈ Rn+ is
the vector of returns on round t. To see why this choice makes sense observe
that

T∑
t=1

ft(xt) = −
T∑
t=1

log(xt · rt) = − log
(

T∏
t=1

xt · rt

)

If we denote by wt the total wealth of the decision maker at the beginning of
round t, then we arrive at the recursion: wt+1 = wtxt ·rt = ... = w1

∏t
τ=1 xτ ·

rτ . Thus, if we assume without losing generality that the initial wealth w1 is
1, then −

∑T
t=1 log

(∏T
t=1 xt · rt

)
is the minus logarithm of the overall wealth

after T trading rounds. Moreover, if we denote by x∗ the best constant
rebalancing portfolio (CRP) in hindsight, then

regretT = − log
(

T∏
t=1

xt · rt

)
+ log

(
T∏
t=1

x∗ · rt

)
= log

(
w∗T
wT

)
is the log ratio between the wealth of the best CRP at the end of the trading
period, and the wealth of decision maker.

Application to Stochastic Optimization and Statistical Learning
OCO has strong connections to the learning and optimization paradigms
known as statistical learning and stochastic optimization. Roughly speak-
ing, in both paradigms the goal is to minimize a function over some feasible
set however, the function is not given explicitly, but is defined by the ex-
pectation according to some unknown distribution over a (possibly infinite)
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set of functions. Hence, in these settings we do not have direct access to
the objective function, but only to unbiased estimators of its values, or its
derivatives. In these problems, the standard way to measure peformence
is according to the sample complexity, i.e. number of estimators the algo-
rithm needs to observe in order to guarantee a certain approximation to the
optimal value. For more details see [13, 48], and also Section 2.1.3.

Application to Convex Optimization Algorithms for OCO could be
applied via a natural and elegant framework, that allows for a robust and
flexible analysis, to solve saddle-point optimization problems. As a result,
many state-of-the-art algorithms for convex optimization based on OCO
algorithms were developed in recent years. See for instance [38, 19, 37, 17],
and also Section 4.7 for a concrete application to semidefinite optimization.

1.2.3 Algorithms for OCO

We are going to assume that the feasible set K is closed and compact (which
is standard in OCO) and for ease of presentation, we are going to assume in
this chapter that all loss functions {ft}Tt=1 are differential everywhere in K.

Following our discussion on first-order methods for convex optimization,
it is tempting to consider the following, seemingly simple, modification of
the update-rule (1.3):

xt+1 ← argmin
x∈K
∥x− [xt − ηt∇ft(xt)]∥2. (1.4)

That is, on each iteration t of the OCO game, the next iterate is produced
by performing a gradient improvement step with respect to the current loss
function ft, and then projecting the resulting point to enforce feasibility.
Suprisingly, this update-rule for OCO can indeed guarantee low regret, and
in fact optimal regret! The following theorem is basically due to Zinkevich
[94].

Theorem 2. Suppose that there exists a constant G such that for all t ∈
{1, 2, ..., T} and all x ∈ K, it holds that ∥∇f(x)∥2 ≤ G. Then, there exists a
choice for {ηt}Tt=1 such that regretT = O(GD

√
T ), where D is the diameter

of K, i.e. D := maxx,y∈K ∥x− y∥2.
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There is a strong connection to be drawn between the worst-case regret
bounds attainable for OCO (under certain assumptions on the set K and
the functions f1, ..., fT ) and the oracle complexity of first-order methods for
convex optimization. Consider the function r(t) :=

regrett
t , which is just

the average regret after t rounds. We can interpret r(t) as describing a
worst-case convergence rate, and as in the setting of convex optimization,
ask for which Tϵ it holds that r(t) ≤ ϵ for all t ≥ Tϵ. With this view, and the
update rule suggested in Eq. (1.4), we can see that minimizing the worst case
regret is equivalent to minimizing the number of gradients of loss functions
the algorithm needs to observe to guarantee sufficiently small average regret.
Thus in a sense, both optimal first-order methods for convex optimization,
and optimal methods for OCO, optimize the same performance measure.

Of course, the same discussion we had on the computational efficiency
of first-order methods for constrained convex optimization holds also here,
since we also need to deal with computing projections onto the feasible set.
The previous paragraph, indeed suggests that the majority of focus in de-
veloping algorithms for OCO in recent years has been on minimizing the
oracle complexity and not necessarily the computational complexity of al-
gorithms, which may render even regret-optimal algorithms to be inefficient
in practice.

1.3 The Linear Optimization Oracle Model and
Motivation for this Thesis

In light of the discussion on information-optimal methods for convex opti-
mization and online convex optimization, and their shortcomings in han-
dling feasible sets with involved geometry (due to the need to compute
computationally-expensive projections), in this thesis we wish to strike a
new balance between the first-order oracle complexity of algorithms and the
complexity of enforcing the feasbilility of the iterates. Towards this end,
we consider replacing the projection operation, which is equivalent to min-
imizing a quadratic function over the feasible set, with a potentially much
more computationally-efficient procedure, namely minimizing a linear func-
tion over the feasible set. That is, we assume that given a vector c ∈ Rn,
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we can efficiently solve:

argmin
x∈K

x · c.

Indeed, linear optimization is the simplest non-trivial optimization prob-
lem that we can ask to solve given a fixed feasible set K.

Thus, inspired by the simple projection-based schemes (1.3) and (1.4),
and with the intent of replacing the projection operation with a call to
a linear optimization oracle (LOO), we arrive at the following high-level
question that guides this thesis:

what are the convergence rates attainable for convex optimization and
online learning by algorithms that access the feasible set only through

a linear optimization oracle?

We conclude this section with the following two important remarks.
First, while linear optimization could be carried out via generic algorithms
for convex optimization, this is not our intention here, since then, the effi-
ciency of solving the linear problem will not be much more favorable than
that of solving the projection problem. Indeed the interesting types of con-
vex sets in this context, are those for which the problem of linear optimiza-
tion has received special treatment in the literature and for which highly ef-
ficient ad-hoc algorithms are available. Examples include various polytopes
that arise in combinatorial optimization (see Chapter 2 for concrete exam-
ples), various balls induced by ℓp norms and generalization of (see Chapter
3), and the spectrahedron (see Chapter 4).

Second, it is known that convex optimization is solvable in polynomial
time given a LOO in the following way: given an infeasible point x /∈ K, it
is possible to run the Ellipsoid method, where the LOO is used to generate
a separating hyperplane on each iteration, such that the resulting point
is in turn a hyperplane separating x from K. Thus, we can use this as a
subprocedure for generating separating hyperplanes for the Ellipsoid method
to optimize over K. However, this elaborated nested-ellipsoid method will
have arithmetic complexity Õ(n6) and will require Õ(n4) calls to the LOO
3. Hence, it is clearly not of any practical interest for even medium-sized

3recall the the Ellipsoid method performs Õ(n2) iterations, each consists of generating
a single separating hyperplane and additional O(n2) arithmetic operations.
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problems. We refer the interested reader to the seminal work [40] for morel
details.

1.4 Organization of this Thesis and Contribution

The remaining of this thesis is organized in three chapters. Each chapter
considers either the problem of convex optimization or online learning (or
both) with a different type of feasible set. Each chapter proposes algorithms
that access the feasible set only through a LOO and provably improve over
the previous state-of-the-art LOO-based results. Interestingly, in each one of
the chapters, it is shown that different proprieties of the feasible set enable
the derivation of more efficient algorithms.

To make the results in this thesis more accessible, each chapter is self-
contained and can be read independently of the others.

Chapter 2 studies convex optimization and OCO under the assumption
that the feasible set is a polytope. The main result of this chapter is a
novel variant of an LOO-based algorithm, known as the conditional gradient
method, for smooth and strongly convex optimization, which converges to an
ϵ approximated solution after performing roughly n log(1/ϵ) calls to the LOO
and the first-order oracle. This gives exponential improvement over previous
results in this model that were studied since the original introduction of the
conditional gradient method by Frank and Wolfe in 1956 [31].

The chapter then continues to harness the machinery developed for the
offline algorithm to derive projection-free algorithms for online convex opti-
mization that require only a single call to the LOO per round of the game,
and guarantee optimal regret in terms of the game length T . These results
resolve a question of Kalai and Vempala [56], and of Hazan and Kale [49].

A consequence of these online algorithms are algorithms for offline con-
vex optimization settings such as non-smooth optimization and stochastic
optimization, to which previous LOO-based algorithms were not applicable
in general, and are optimal in terms of the error parameter ϵ.

Chapter 3 studies convex optimization under the assumption that the fea-
sible set is strongly convex, which includes various balls induced by ℓp norms
and generalizations of. The main result in this chapter is that the vanilla
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LOO-based algorithm, known as the conditional gradient method, converges
at an accelerated rate of O(1/t2) instead of the previously known O(1/t)

rate (i.e. quadratic improvement), when the function f is both smooth and
strongly convex.

Chapter 4 studies an online learning problem we refer to as online learn-
ing of eigenvectors, which is a natural extension to the online setting of the
classical problem from numerical linear algebra of computing the leading
eigenvector of a real symmetric matrix. The main result of this chapter is
a LOO-based online algorithm that improves over previous such algorithms
by a factor of roughly

√
n in the regret. Furthermore, the running time of

the algorithm per iteration depends only the number of non-zeros in the
observed data, and not explicitly on the dimension n2, as in previous algo-
rithms.

On the technical side, the derivation of the algorithm follows from a novel
approach to analyzing an online meta-algorithm, known as follow the per-
turbed leader, which is inspired by matrix perturbation theory. Specifically
we study certain spectral proprieties of matrices under random rank-one
perturbations, which is interesting in its own right and has further applica-
tions.

We also present an online algorithms for a slightly easier stochastic set-
ting, which guarantees nearly optimal regret and whose overall complexity
per iteration is just the number of non-zero entries in the observed data.
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Chapter 2

A Linearly Convergent
Conditional Gradient
Algorithm with Applications
to Online and Stochastic
Optimization

First-order optimization methods, such as (sub)gradient-descent methods
[83, 69, 70] and conditional-gradient methods [31, 27, 18, 45, 52], are often
the method of choice for coping with very large scale optimization tasks.
While theoretically attaining inferior convergence rate compared to other
efficient optimization algorithms (e.g. interior point methods [73]), modern
optimization problems are often so large that using second-order information
or other super-linear operations becomes practically infeasible.

The computational bottleneck of (sub)gradient descent methods in many
settings is the computation of orthogonal projections onto the convex do-
main. This is also the case with proximal methods [70]. Computing such
projections is very efficient for simple domains such as the euclidean ball,
the hypercube and the simplex but much more involved for more compli-
cated domains, making these methods impractical for such problems in high-
dimensional settings.

On the other hand, for many convex sets of interest, optimizing a linear
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objective over the domain could be done by a very efficient and simple
combinatorial algorithm. Prominent examples for this phenomena are the
matroid polytope for which there is a simple greedy algorithm for linear
optimization, and the flow polytope (convex hull of all s − t paths in a
directed acyclic graph) for which linear optimization amounts to finding
a minimum-weight path [79]. Other important examples include the set
of rotations for which linear optimization is very efficient using Wahba’s
algorithm [89], and the bounded cone of positive semidefinite matrices, for
which linear optimization amounts to a leading eigenvector computation
whereas projections require cimputing the singular value decomposition.

This phenomena motivates the study of optimization algorithms that
require only linear optimization steps over the domain and their linear oracle
complexity - that is, the number of linear objectives that the algorithm needs
to minimize over the domain in order to achieve a desired accuracy with
respect to the optimization objective.

The main contribution of this chapter is a conditional gradient (aka
Frank-Wolfe) algorithm for oflline smooth and strongly convex optimiza-
tion over polyhedral sets that requires only a single linear optimization step
over the domain on each iteration and enjoys a linear convergence rate, an
exponential improvement over previous results in this setting.

We also consider the setting of online convex optimization [94, 80, 46, 58].
In this setting, a decision maker is iteratively required to choose a point in
a fixed convex decision set. After choosing his point, an adversary chooses
some convex function and the decision maker incurs a loss that is equal
to the function evaluated at the point chosen. In this adversarial setting
there is no hope to play as well as an optimal offline algorithm that has the
benefit of hindsight. Instead the standard benchmark is an optimal naive
offline algorithm that has the benefit of hindsight but must play the same
fixed point on each round. The difference between the cumulative loss of
the decision maker and that of of this offline benchmark is known as regret.
Based on our new linearly converging conditional gradient algorithm, we give
algorithms for online convex optimization over polyhedral sets that perform
only a single linear optimization step over the domain on each iteration while
enjoying optimal regret guarantees in terms of the game length, answering an
open question of Kalai and Vempala [56], and Hazan and Kale [49]. Using
existing techniques we give an extension of this algorithm to the partial
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Setting Previous This work
Offline, smooth and strongly convex t−1 [52] e−Θ(t)

Offline, non-smooth and convex t−1/3 [49] t−1/2

Offline, non-smooth and strongly convex t−1/3 [49] log(t)/t
Stochastic, non-smooth and convex t−1/3 [49] t−1/2

Stochastic, non-smooth and strongly convex t−1/3 [49] log t/t
Online, convex losses T 3/4 [49]

√
T

Online, strongly convex losses T 3/4 [49] logT

Table 2.1: Comparison between conditional gradient-based methods for op-
timization over polytopes in various settings. In the offline and stochastic
settings we give the approximation error after t linear optimization steps
over the domain and t gradient vector evaluations. In the online setting we
give the order of the regret in a game of length T , and after at most T linear
optimization steps over the domain. In all results we omit the dependencies
on constants and the dimension, these dependencies will be fully detailed in
the sequel.

information setting which obtains the best known regret bound for this
setting.

Finally, our online algorithms also imply conditional gradient-like algo-
rithms for offline non-smooth convex optimization and stochastic convex op-
timization that enjoys the same convergence rates as projected (sub)gradient
methods in terms of the accuracy parameter ϵ(albeit different dependency on
constants and the dimension), but replacing the projection step of (sub)gradient
methods with a single linear optimization step, again improving over the
previous state of the art in these settings.

Our results are summarized in Table 2.

Related work

The conditional gradient method for smooth optimization Con-
ditional gradient methods for offline minimization of convex and smooth
functions date back to the work of Frank and Wolfe [31] which presented a
method for smooth convex optimization over polyhedral sets whose iteration
complexity amounts to a single linear optimization step over the convex do-
main. More recent works of Clarkson [18], Hazan [45] and Jaggi [52] consider
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the conditional gradient method for the cases of smooth convex optimization
over the simplex, semidefinite cone and arbitrary convex and compact sets
respectively. Despite its relatively slow convergence rate - additive error of
the order 1/t after t iterations, the benefit of the method is twofold: i) its
computational simplicity - each iteration is comprised of optimizing a linear
objective over the set and ii) it is known to produce sparse solutions (for the
simplex this means only a few non zeros entries, for the semidefinite cone
this means that the solution has low rank). Due to these two properties,
conditional gradient methods have attracted much attention in the machine
learning community in recent years, see [53, 62, 52, 26, 42, 81, 64, 8].

It is known that in general the convergence rate 1/t is also optimal
for this method without further assumptions, as shown in [18, 45, 52]. In
case the objective function is both smooth and strongly convex, there exist
extensions of the basic method which achieve faster rates under various as-
sumptions. One such extension of the conditional-gradient algorithm with
linear convergence rate was presented by Migdalas [68], however the algo-
rithm requires to solve a regularized linear problem on each iteration which
is computationally equivalent to computing projections. This is also the
case with the algorithm for smooth and strongly convex optimization in
the recent work of Lan [63]. In case the convex set is a polytope, GuéLat
and Marcotte [41] has shown that the algorithm of Frank and Wolfe [31]
converges in linear rate assuming that the optimal point in the polytope is
bounded away from the boundary. The convergence rate is proportional to
a quadratic of the distance of the optimal point from the boundary. We
note that in case the optimum lies in the interior of the convex domain,
then the problem is in fact an unconstrained convex optimization problem
and solvable via much more efficient methods. GuéLat and Marcotte [41]
also gave an improved algorithm based on the concept of “away steps” with
a linear convergence rate that holds under weaker conditions, however this
linear rate still depends on the location of the optimum with respect to the
boundary of the set which may result in an arbitrarily bad convergence rate.
We note that the suggestion of using “away steps” to accelerate the conver-
gence of the FW algorithm for strongly convex objectives was already made
by Wolfe himself in [92]. Beck and Taboule [10] gave a linearly converging
conditional gradient algorithm for solving convex linear systems, but as in
[41], their convergence rate depends on the distance of the optimum from
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the boundary of the set. Here we emphasize that in this work we do not
make any assumptions on the location of the optimum in the convex domain
and our convergence rates are independent of it.

Ahipasaoglu, Sun and Todd [2] gave a variant of the conditional gradient
algorithm with away steps that achieves a linear convergence rate for the
specific case in which the convex domain is the unit simplex. Their work
also does not specify the precise dependency of the convergence rate on pa-
rameters of the problem such as the dimension, which is of great importance.
In this work we derive, as an illustrating example, a linearly converging al-
gorithm for the unit simplex. Our generalization to arbitrary polytopes is
highly non-trivial and is indeed the technical heart of this work. We also
provide convergence rates with detailed dependencies on natural parameters
of the problem.

After our work first appeared [34], Jaggi and Lacoste-Julien [61] pre-
sented a refined analysis of a variant of the conditional gradient algorithm
with away steps from [41] that achieves a linear convergence rate without
the assumption on the location of the optimum as in the original work of
[41]. Their algorithm is also shown to be affine invariant. Their convergence
rate however is not given explicitly and its dependency on the dimension or
other natural parameters of the problem is not clear.

Conditional gradient-like methods for online, stochastic and non-
smooth optimization The two closest works to ours are those of Kalai
and Vempala[56] and Hazan and Kale [49], both present projection-free algo-
rithms for online convex optimization in which the only optimization carried
out by the algorithms on each iteration is the minimization of a single linear
objective over the decision set. [56] gives a random algorithm for the online
setting in the special case in which all loss functions are linear, also known as
online linear optimization. In this setting their algorithm achieves regret of
O(
√
T ) which is optimal [14]. On iteration t their algorithm plays a point in

the decision set that minimizes the cumulative loss on all previous iterations
plus a vector whose entries are independent random variables. The work of
[49] introduces algorithms for stochastic and online optimization which are
based on ideas similar to ours - using the conditional gradient update step
to approximate the steps a meta-algorithm for online convex optimization
known as Regularized Follow the Leader (RFTL) [46, 80]. For stochastic op-
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timization, in case that all loss functions are smooth they achieve an optimal
convergence rate of 1/

√
T , however for non-smooth stochastic optimization

they only get convergence rate of T−1/3 and for the full adversarial setting of
online convex optimization they get suboptimal regret that scales like T 3/4.

In a recent work, Lan [63] showed how to apply the conditional gradient
algorithm to offline non-smooth optimization via a well known smoothing
technique (also employed in [49]). His analysis shows that an ϵ additive
error is guaranteed after a total of O(ϵ−2) linear optimization steps over the
domain and O(ϵ−4) calls to the subgradient oracle of the objective. Our
algorithm for the non-smooth setting guarantees an ϵ additive error after
O(ϵ−2) linear optimization steps over the domain and O(ϵ−2) calls to the
subgradient oracle.

Also relevant to our work is the recent work of Harchaoui, Juditsky
and Nemirovski [43] who give methods for i) minimizing a norm over the
intersection of a cone and the level set of a convex smooth function and ii)
minimizing the sum of a convex smooth function and a multiple of a norm
over a cone. Their algorithms are extensions of the conditional gradient
method that assume the availability of a stronger oracle that can minimize
a linear objective over the intersection of the cone and a unit ball induced
by the norm of interest. They present several problems of interest for which
such an oracle could be implemented very efficiently, however in general such
an oracle could be computationally much less efficient than the linear oracle
required by standard conditional gradient methods.

Organization of this chapter

The rest of this chapter is organized as follows. In section 2.1 we give pre-
liminaries, including notation and definitions that will be used throughout
this chapter, examples for polytopes of interest, overview of the conditional
gradient method, and describe the settings of online convex optimization
and stochastic optimization. In section 2.2 we give an informal statement
of the main results presented in this chapter. In section 2.3 we present our
main result - a new linearly convergent conditional gradient algorithm for
offline smooth and strongly convex optimization over polyhedral sets. In sec-
tion 2.4 we present and analyze our main new algorithmic machinery which
we refer to as a local linear optimization oracle. In section 2.5 we discuss
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an application of our linearly convergent CG algorithm to the problem of
Submodular Function Minimization. In section 2.6 we present and analyze
our algorithms for online and stochastic optimization, and finally in section
2.7 we discuss a lower bound for the problem of minimizing a smooth and
strongly convex function using only linear optimization steps - showing that
the oracle complexity of our new algorithm presented in section 2.3 is nearly
optimal.

2.1 Preliminaries

We denote by Br(x) the euclidean ball of radius r centred at x. We denote
by ∥x∥ the ℓ2 norm of the vector x and by ∥A∥ the spectral norm of the
matrix A, that is ∥A∥ = maxx∈B ∥Ax∥. Given a matrix A, we denote by
A(i) the vector that corresponds to the ith row of A.

Definition 1. We say that a function f(x) : Rn → R is Lipschitz with
parameter L over the set K if for all x, y ∈ K it holds that

|f(x)− f(y)| ≤ L∥x− y∥.

Definition 2. We say that a function f(x) : Rn → R is β-smooth over the
set K if for all x, y ∈ K it holds that

f(y) ≤ f(x) +∇f(x) · (y − x) + β

2
∥x− y∥2.

Definition 3. We say that a function f(x) : Rn → R is σ-strongly convex
over the set K if for all x, y ∈ K it holds that

f(y) ≥ f(x) +∇f(x) · (y − x) + σ

2
∥x− y∥2.

The above definition together with first order optimality conditions im-
ply that for a σ-strongly convex f , if x∗ is the unique minimizer of f over
K, then for all x ∈ K it holds that

f(x)− f(x∗) ≥ σ

2
∥x− x∗∥2. (2.1)

Note that a sufficient condition for a twice-differential function f to be
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β-smooth and σ-strongly convex over a domain K is that

∀x ∈ K : βI ⪰ ∇2f(x) ⪰ σI.

Let P be a polytope described by linear equations and inequalities, i.e.

P = {x ∈ Rn |A1x = b1, A2x ≤ b2}, (2.2)

where A2 ∈ Rm×n. We assume without loss of generality that all rows of
A2 are scaled to have unit ℓ2 norm.We denote by V(P) the set of vertices
of P, and we let N = |V|. We now define several geometric parameters of
P that will come up naturally in the analysis of our algorithms. We denote
the Euclidean diameter of P by D(P), i.e., D(P) = maxx,y∈P ∥x− y∥. We
denote

ξ(P ) = min
v∈V(P)

(min{b2(j)−A2(j) · v | j ∈ [m], A2(j) · v < b2(j)}) .

That is, given an inequality constraint that defines the polytope and a ver-
tex of the polytope, the vertex either satisfies the constraint with equality
or is at least ξ(P )-far from satisfying it with equality. Let r(A2) denote the
row-rank of the matrix A2. Let A(P) denote the set of all r(A2) × n ma-
trices whose rows are linearly independent vectors chosen from the rows of
A2 and denote ψ(P) = maxM∈A(P) ∥M∥. Finally denote µ(P) = ψ(P)D(P)

ξ(P) .
It is important to note that the quantity µ(P) is invariant to translation,
rotation and scaling of the polytope P. Note also that it always holds that
µ(P) ≥ 1 (this follows since by definition ψ(P) ≥ 1 and ξ(P) ≤ D(P)).
Henceforth we shall use the shorthand notation of V, D, ξ, ψ, µ when the
polytope considered is clear from context. Note that in many settings of
interest (problems for which there is indeed an highly-efficient algorithm for
linear optimization over the specified polytope), estimating the parameters
ξ, ψ is straightforward. For instance, in convex domains that arise in combi-
natorial optimization such at the flow polytope, matching polytope, matroid
polytopes, etc.

Throughout this chapter we will assume that we have access to an oracle
that returns a vertex of P that minimizes the dot product with a given linear
objective. That is we are given a procedure OP : V → R such that for all
c ∈ Rn, OP(c) ∈ argminv∈V v · c. We call OP a linear optimization oracle.
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2.1.1 Examples of polytopes

We now turn to briefly discuss some common polyhedral sets. In particular
we discuss their geometry in terms of the parameters ξ, ψ, µ,D that we have
just defined, and the complexity of performing linear minimization over
them. We emphasize that our methods work for any polytope and that the
polytopes discussed here are brought only as an example.

Probabilistic Simplex The simplex in Rn is the set of all distributions
over n elements, i.e. the set:

Sn = {x ∈ Rn | ∀i ∈ [n] : xi ≥ 0 ,
n∑
i=1

xi = 1}.

Alternatively, Sn is the convex hull of all standard basis vectors in Rn.
Sn could be written in the form of (2.2) as follows:

Sn = {x ∈ Rn | − Ix ≤ 0⃗ , x · 1⃗ = 1},

where I is the identity matrix and 0⃗, 1⃗ are the all-zeros and all-ones vectors,
respectively.

Since the inequalities defining Sn are of the form −Ix ≤ 0⃗ and all vertices
of Sn are in {0, 1}n, it immediately follows that ξ = 1, ψ = 1. Also it is easy
to see that D =

√
2. Thus it follows that for the simplex µ =

√
2.

Linear minimization over the simplex is highly trivial: since the vertices
of Sn are exactly the standard basis vectors of Rn, it follows that given
a linear objective c ∈ Rn, its minimizer over Sn (generally there could be
more than one) is the standard basis vector that corresponds to the smallest
(signed) entry in c.

Hypercube The hypercube in Rn is the set:

Cn = {x ∈ Rn | ∀i ∈ [n] : 1 ≥ xi ≥ 0}.

Cn could be written in the form of (2.2) as follows:

Cn = {x ∈ Rn | − Ix ≤ 0⃗ , Ix ≤ 1⃗}.
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As in the case of the simplex, since the inequalities are of the form
−Ix ≤ 0⃗, Ix ≤ 1⃗, and all vertices of Sn are in {0, 1}n, it immediately follows
that ξ = 1, ψ = 1. Also it is easy to see that D =

√
n. Thus it follows that

for the hypercube µ =
√
n.

Linear minimization over the hypercube is also highly trivial: since the
set of vertices of Cn is exactly the set {0, 1}n, it follows that given a linear
objective c ∈ Rn, its minimizer over Cn (generally there could be more
than one) is given by −sign(c), where sign : Rn → Rn is a vector-valued
function that sets each entry in the output to the sign (either 1 or −1) of
the corresponding entry in the input.

Flow polytope Let G be a directed acyclic graph (DAG) with a set of
vertices V such that |V | = n, and a set of edges E such that |E| = m, and
let s, t be two vertices in V which we refer to as the source and the target,
respectively. The s − t flow polytope, denoted here by Fst, is the set of all
unit s − t flows in G, where for each point x ∈ Fst and i ∈ [m], the entry
xi is the amount of flow through edge i according to the flow x. Fst is also
known as the s− t path polytope since it is the convex hull of all identifying
vectors of paths from s to t in the graph G. Since it is the set of all s−t unit
flows, the polytope Fst could be described in the following standard way:

Fst = {x ∈ Rm | − Ix ≤ 0⃗, x · 1⃗→t = 1, ∀u ∈ V \ {s, t} : (⃗1→u − 1⃗←u) · x = 0},

where for any vertex u ∈ V we denote by 1⃗→u the vector in Rm for which
there is 1 in each entry that corresponds to an edge going into u in the
graph, and 0 otherwise. 1⃗←u is defined in the same way for edges going out
of u.

As in previous examples, the inequalities defining Fst are of the form
−Ix ≤ 0⃗ and all vertices of Fst are in {0, 1}m (since, as discussed, it is the
convex hull of all s− t paths in the graph). Thus, as before, it follows that
ξ = ψ = 1. Also, it easily follows that D <

√
2n, and thus we have that

µ ≤
√
2n.

Since Fst is the convex hull of paths, linear minimization is straight
forward: given a linear objective c ∈ Rm, we need to find the identifying
vector of the lightest s−t path in G with respect to the edge weights induced
by c. Since the graph G is a DAG, this could be carried out in O(m) time
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[79].

Matching polytope (Birkhoff polytope) Let G be a bipartite graph
with a set of vertices V = L ∪ R such that |R| = |L| = n. Assume G is
fully connected, i.e. for every two vertices u ∈ L, v ∈ R, there is an edge
in the graph connecting u and v. The matching polytope, denoted here by
M, is then the convex hull of all identifying vectors of perfect matchings in
G. Note thatM⊂ Rm and the vertices ofM are vectors in {0, 1}m, where
m = n2 is the number of edges in the graph.

The matching polytope is equivalent to the Birkhoff polytope, which is the
set of all n × n doubly stochastic matrices, i.e. matrices with non-negative
real entries whose entries along any row and any column add up to 1. In
correspondence with the vertices of the matching poltyope, the Birkhoff
polytope is the convex hull of all n× n permutation matrices, i.e. matrices
whose any row and any column contain exactly one non-zero entry which is
set to 1 (this is also known as the Birkhoff-von Neumann Theorem).

Since the matching polytope is equivalent to the polytope of doubly
stochastic matrices, it is easily described in algebraic form:

M = {x ∈ Rm | − Ix ≤ 0⃗, ∀u ∈ L : 1⃗u · x = 1, ∀u ∈ R : 1⃗u · x = 1},

where 1⃗u denotes the vector in {0, 1}m in which all entries that correspond
to edges connected to the vertex u are set to 1, and all other edges are set
to 0.

The inequalities defining M are again of the form −Ix ≤ 0⃗ and, as
discussed, all vertices ofM are in {0, 1}m. Thus, as before, it follows that
ξ = ψ = 1. Also, it easily follows that D ≤

√
2n and thus we have that

µ ≤
√
2n.

In order to do linear minimization overM, given a linear objective c ∈
Rm, we need to find a minimum-weight perfect matching in a fully connected
bipartite graph, where the edge weights are induced by c. There is a well
known algorithm for this problem known as the Hungarian algorithm which
runs in O(n3) time [79].

Matroid Polytopes Let E = [n] and let I be a set of subsets of E, also
known as the set of independent sets, such that (E, I) is a matroid. For a
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detailed introduction to matroids and their proprieties the reader is referred
to [79]. The polytope assosiated with the matroid (E, I), denoted here by
MI , is the convex hull of all identifying vectors of the subsets in I. It thus
holds thatMI ⊂ Rn and that the vertices ofMI are in {0, 1}n.

Matroids and their polytopes have important applications in many com-
binatorial optimization problems. Examples include spanning trees-related
problems and Submodular Function Minimization (SFM) (see [79] for a more
detailed list). For a connection of this work with SFM see also Section 2.5.

In order to describe MI in algebraic form we need to introduce the
notion of a rank function of a matroid r : 2E → N. For any subset S ⊆ E,
r(S) is the size of the largest independet set M ∈ I that is fully contained
in S.

The polytopeMI could be described as follows (see also [79]):

MI = {x ∈ Rn | − Ix ≤ 0⃗, ∀S ∈ 2E : 1⃗S · x ≤ r(S)},

where 1⃗S is the identifying vector of the set S. In Section 2.5 we show that
forMI it holds that ξ = 1 and ψ ≤ n. It also clearly holds that D ≤

√
n.

Thus, it follows that µ ≤ n3/2.
Given a linear objective c ∈ Rn, there is a well known greedy algorithm

for linear minimization overMI which amounts to sorting the elements in
E according to their weight in c in increasing order, and adding them to the
current solution, as long as it remains an independent set in I, and the total
weight decreases. This algorithm runs in O(n logn) time under the standard
assumption that I is given by an independence oracle that can answer in
O(1) time whether a subset S is in I or not. See [79] for details.

2.1.2 The conditional gradient method and local linear opti-
mization oracles

The conditional gradient method is a simple algorithm for minimizing a
smooth and convex function f over a convex set P - which in this chapter
we assume to be a polytope. The appeal of the method is that it is a first
order feasible point method, i.e., the iterates always lie inside the convex set
and thus no projections are needed. Further more, the update step on each
iteration simply requires to minimize a linear objective over the set. The
basic algorithm is given below.
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Algorithm 1 Conditional Gradient
1: Input: sequence of step sizes {αt}∞t=1 ⊆ [0, 1]
2: Let x1 be an arbitrary point in P.
3: for t = 1, 2, ... do
4: pt ← OP(∇f(xt))
5: xt+1 ← xt + αt(pt − xt)
6: end for

Let x∗ denote the unique minimizer of f over P that is, x∗ = argminx∈K f(x).
The convergence of algorithm 1 is due to the following simple observations.

f(xt+1)− f(x∗) (2.3)
= f(xt + αt(pt − xt))− f(x∗)

≤ f(xt)− f(x∗) + αt(pt − xt) · ∇f(xt) + α2
tβ
2 ∥pt − xt∥

2 / β-smoothness of f

≤ f(xt)− f(x∗) + αt(x
∗ − xt) · ∇f(xt) + α2

tβ
2 ∥pt − xt∥

2 / optimality of pt
≤ f(xt)− f(x∗) + αt(f(x

∗)− f(xt)) + α2
tβ
2 ∥pt − xt∥

2 / convexity of f.

Thus for an appropriate choice for the sequence of step sizes {αt}∞t=1, the
approximation error strictly decreases on each iteration. This leads to the
following theorem. For a proof see for instance the modern survey of [52],
or alternatively, see Theorem 11 in Section 3.1.2.

Theorem 3. There is an explicit choice for the sequence of step sizes {αt}∞t=1

such that for every t ≥ 2, the iterate xt of Algorithm 1 satisfies that f(xt)−
f(x∗) = O

(
βD2

t−1

)
.

The relatively slow convergence of the conditional gradient algorithm is
due to the term ∥pt − xt∥ in Eq. (2.3), that may remain as large as the
diameter of P while the term f(xt)− f(x∗) keeps on shrinking, that forces
choosing values of αt that decrease like 1

t in order to guarantee convergence
[18, 45, 52].

Notice that if f(x) is σ-strongly convex for some σ > 0 then according to
Eq. (2.1), knowing that for some iteration t it holds that f(xt)− f(x∗) ≤ ϵ,
implies that ∥xt − x∗∥2 ≤ 2ϵ

σ . Thus when choosing the point pt, denoting
r =

√
2ϵ/σ, it is enough to consider points that lie in the intersection set
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P ∩ Br(xt), i.e., take pt to be the solution to the optimization problem

min
p∈P∩Br(xt)

p · ∇f(xt). (2.4)

In this case the term ∥pt − xt∥2 in Eq. (2.3) will be of the same mag-
nitude as f(xt) − f(x∗) (or even smaller) and as observable in Eq. (2.3), a
linear convergence rate will follow.

However, solving Problem (2.4) is potentially much more difficult than
solving the original linear problem minp∈P p · ∇f(xt), and is not straight-
forward solvable using the linear optimization oracle of P.

To overcome the problem of solving the linear problem in the intersection
P∩Br(xt) we introduce the following definition which is a primary ingredient
of this chapter.

Definition 4 (Local Linear Optimization Oracle). We say that a procedure
A(x, r, c), where x ∈ P, r ∈ R+, c ∈ Rn, is a Local Linear Optimization
Oracle with parameter ρ ≥ 1 for the polytope P, if A(x, r, c) returns a feasible
point p ∈ P such that:

1. ∀y ∈ B(x, r) ∩ P it holds that y · c ≥ p · c.

2. ∥x− p∥ ≤ ρ · r.

The local linear optimization oracle (LLOO) relaxes Problem (2.4) by
solving the linear problem on a larger set, but one that still has a diame-
ter that is not much larger than

√
f(xt)− f(x∗). Our main contribution

is in showing that for a polytope P, a LLOO can be constructed such that
the parameter ρ depends only on the dimension n and the quantity µ(P).
Moreover, the algorithmic construction requires only a single call to the orig-
inal linear optimization oracle OP . Hence, the complexity per iteration, in
terms of the number of calls to the linear optimization oracle OP , remains
the same as the original conditional gradient algorithm (Algorithm 1). Fig-
ure 2.1 gives some intuition why a construction of such an oracle is possible
for polyhedral sets.
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Figure 2.1: Given a polytope P, a feasible point x and a radius r > 0, if r
is small enough, then it is always possible to fit a scaled-down version of P,
denoted by P ′, such that on one hand P ′ is fully contained in P and on the
other hand P ′ fully contains the intersection of P with the ball of radius r
centered at x. Given a linear objective c ∈ Rn, we can take the vertex of P ′
that minimizes the dot product with c to be the output of a LLOO for P
queried with the input (x, r, c).

2.1.3 Online convex optimization and its application to stochas-
tic and offline optimization

The problem of online convex optimization (OCO) [94, 47, 46] takes the
form of the following repeated game. A decision maker is required on each
iteration t of the game to choose a point xt ∈ K, where K is a fixed convex
set. After choosing the point xt, a convex loss function ft(x) is reveled, and
the decision maker incurs loss ft(xt). The emphasis in this model is that
the loss function on time t may be chosen completely arbitrarily and even in
an adversarial manner given the current and past decisions of the decision
maker. In the full information setting, after making his decision on time
t, the decision maker gets full knowledge of the function ft. In the partial
information setting (bandit) the decision maker only learns the value ft(xt)
and does not gain any other knowledge about ft.

The standard goal in this setting is to have overall loss which is not much
larger than that of the best fixed point in K, in hindsight. Formally the goal
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is to minimize a quantity known has regret which is given by

regretT :=
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

In certain cases, such as in the bandit setting, the decision maker must
use randomness in order to make his decisions. In this case we consider the
expected regret, where the expectation is taken over the randomness in the
algorithm of the decision maker.

In the full information setting and for general convex losses the optimal
regret bound attainable scales like

√
T [14] where T is the length of the

game. In the case that all loss functions are strongly convex, the optimal
regret bound attainable scales like log(T ) [48].

Algorithms for OCO

A simple algorithm that attains optimal regret of O(
√
T ) for general convex

losses is known as the Regularized Follows The Leader algorithm (RFTL)
[46]. On time t the algorithm predicts according to the following rule.

xt ← argmin
x∈K

{
η

t−1∑
τ=1

∇fτ (xτ ) · x+R(x)

}
. (2.5)

Where η is a parameter known as the learning rate and R is a strongly
convex function known as the regularization. From an offline optimization
point of view, achieving low regret is thus equivalent to minimizing a single
strongly-convex objective over the feasible set per iteration. In fact, with
the popular choice R(x) = ∥x∥2, we get that Problem (2.5) is just the
minimization of a function that is both smooth and strongly-convex over
the feasible domain K, and is in fact equivalent to computing an Euclidean
projection onto K.

In case of strongly-convex losses a slight variant of Eq. (2.5), which also
takes the form of minimizing a smooth and strongly convex function when
choosing R(x) = ∥x∥2, guarantees optimal O(log(T )) regret.

In the partial information setting the RFTL rule (2.5) with the algorith-
mic conversion of the bandit problem to that of the full information problem
established in [30], yields an algorithm with regret O(T 3/4), which is the best

35



to date.

Our algorithms for online optimization are based on iteratively approx-
imating the RFTL objective in Eq. (2.5) using our new linearly convergent
CG algorithm for smooth and strongly convex optimization, thus replac-
ing the projection step in (2.5) (in case R(x) = ∥x∥2) with a single linear
optimization step over the domain.

We note that while the update rule in Eq. (2.5) uses the gradients of the
loss functions which are denoted by ∇fτ , it is in fact not required to assume
that the loss functions are differentiable everywhere in the domain. It suffices
to assume that the loss functions only have a sub-gradient everywhere in
the domain, making the algorithm suitable also for non-smooth settings.
Throughout this chapter we do not differentiate between these two cases
and the notation ∇f(x) should be understood as a gradient of f at the
point x in case f is differentiable and as a sub-gradient of f in case f only
has a sub-gradient in this point.

Stochastic optimization

In stochastic optimization the goal is to minimize a convex function F (x)

given by

F (x) = Ef∼D[f(x)],

where D is a fixed, yet unknown distribution over convex functions. In this
setting we don’t have direct access to the function F , instead we assume
to have a stochastic oracle for F that when queried, returns a function f

sampled from D, independently of previous samples.

The general setting of online convex optimization is harder than stochas-
tic optimization in the sense that an algorithm for OCO could be directly
applied to stochastic optimization as follows. We simulate an online game of
T rounds for the OCO algorithm, where on each iteration t the loss function
ft(x) is generated by a query to the stochastic oracle of D. Let us denote by
regretT an upper bound on the regret of the online algorithm with respect
to any sample of T functions from the distribution D. Thus, given such a
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sample - {ft}Tt=1, it holds that

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤ regretT .

Denoting x∗ ∈ argminx∈K F (x) we thus in particular have that

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) ≤ regretT .

Since for all t ∈ [T ] it holds that E[ft(xt)|xt] = F (xt) and E[ft(x∗)] =
F (x∗) (where in both cases the expectation is with respect to the random
choice of ft), taking expectation over the randomness of the oracle for F we
have that

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗)

]
=

T∑
t=1

E [E[ft(xt)|xt]]− T · F (x∗)

=

T∑
t=1

E[F (xt)]− T · F (x∗)

= E

[
T∑
t=1

F (xt)

]
− T · F (x∗).

Denoting x̄ = 1
T

∑T
t=1 xt we have by convexity of F that

E[F (x̄)]− F (x∗) ≤ regretT
T

.

Thus the same regret rates that are attainable for online convex op-
timization hold as convergence rates, or sample complexity, for stochastic
convex optimization. We note that using standard concentration results for
martingales, one can also derive error bounds that hold with high proba-
bility and not only in expectation, but these are beyond the scope of this
chapter. We refer the interested reader to [13] for more details.
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Non-smooth optimization

As in stochastic optimization (see previous subsection), an algorithm for
OCO also implies an algorithm for offline convex optimization. Thus a con-
ditional gradient-like algorithm for OCO implies a conditional gradient-like
algorithm for non-smooth convex optimization. This is in contrast to the
original conditional gradient method which is suitable for smooth optimiza-
tion only.

Applying an OCO algorithm to the minimization of a, potentially non-
smooth, convex function f(x) over a feasible convex set K, is as follows. As
in the previous subsection, we simulate a game of length T for the OCO
algorithm in which the loss function ft on each round is just the function to
minimize f(x). As in the stochastic case, denoting x̄ = 1

T

∑T
t=1 xt, i.e., the

average of iterates returned by the online algorithm, we have that

f(x̄)− f(x∗) ≤ 1

T

T∑
t=1

f(xt)− f(x∗) =
1

T

(
T∑
t=1

ft(xt)− ft(x∗)

)
=

regretT
T

,

where the first inequality follows from convexity of f . Hence the regret
bound immediately translates to a convergence rate for offline optimization
problem.

2.2 Results in this Chapter

In this section we give an informal presentation of the main results presented
in this chapter. In all of the following results we consider optimization (either
offline or online) over a polytope, denoted P, and we assume the availability
an oracle OP that given a linear objective c ∈ Rn returns a vertex of P,
v ∈ V that minimizes the dot product with c over P.

Offline smooth and strongly convex optimization Given a β-smooth,
σ-strongly convex function f(x) we present an iterative algorithm that after
t iterations returns a point xt+1 ∈ P such that

f(xt+1)− f(x∗) ≤ C exp
(
− σ

4βnµ2
t

)
, (2.6)
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where x∗ = argminx∈P f(x) and C satisfies that C ≥ f(x1) − f(x∗). Each
iteration is comprised of a single call to the linear optimization oracle of P
and a single evaluation of a gradient vector of f .

As we show in section 2.7, the above convergence rate is nearly tight in
certain settings for a conditional gradient-like method.

Online convex optimization We present algorithms for OCO that re-
quire only a single call to the linear optimization oracle of P per iteration of
the game. In the following we let G denote an upper bound on the ℓ2 norm
of the (sub)gradients of the loss functions revealed throughout the game.
Our results for the online setting are as follows:

1. An algorithm for OCO with arbitrary convex loss functions whose
sequence of predictions - {xt}Tt=1 satisfies that

T∑
t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x) = O
(
GDµ

√
nT
)
. (2.7)

This bound is optimal in terms of T [14].

2. An algorithm for OCO with σ-strongly convex loss functions whose
sequence of predictions - {xt}Tt=1 satisfies that

T∑
t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x) = O

(
σD2ρ4 +

(G+ σD)2nµ2

σ
log(T )

)
.(2.8)

This bound is also optimal in terms of T [48].

3. A randomized algorithm for the partial information setting whose se-
quence of predictions - {xt}Tt=1 satisfies that

E

[
T∑
t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x)

]
= O

(
GD

√
nD

r0
T 3/4 +GDµ

√
nT

)
.(2.9)

Here we assume for simplicity that P is full-dimensional and we denote
by r0 the size of the largest Euclidean ball enclosed in it. This bound
matches the current state-of-the-art in this setting in terms of T [30].
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Stochastic and non-smooth optimization Applying our online algo-
rithms to the stochastic setting, as specified in Subsection 2.1.3, yields al-
gorithms that given a stochastic oracle for a function of the form - F (x) =
Ef∼D[f(x)], and after viewing T i.i.d samples from the distribution D and
making T calls to the linear optimization oracle OP , return a point x̄ =
1
T

∑T
t=1 xt such that the following guarantees hold:

1. If D is a distribution over arbitrary convex functions then

E[F (x̄)]−min
x∈P

F (x) = O

(
GD
√
nµ√
T

)
. (2.10)

2. If D is a distribution over σ-strongly convex functions then

E[F (x̄)]−min
x∈P

F (x) = O

(
σ2D2ρ4 + (G+ σD)2nµ2 log(T )

σT

)
. (2.11)

Here againG denotes an upper bound on the ℓ2 norm of the (sub)gradients
of the functions f sampled from the distribution D.

As described in Subsection 2.1.3, the above rates (without the expecta-
tion) hold also for non-smooth convex and strongly convex optimization.

2.3 A Linearly Convergent Conditional Gradient
Algorithm

In this section we consider the following offline optimization problem.

min
x∈P

f(x), (2.12)

where we assume that f is β-smooth and σ-strongly convex, and P is a
polytope. We further assume that we have a LLOO oracle for P - A(x, r, c),
as defined in Subsection 2.1.2 . In section 2.4 we show that given an oracle
for linear minimization over P , such a LLOO oracle could be efficiently
constructed.

The algorithm is given below.
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Algorithm 2 LLOO-based Convex Optimization
1: Input: A(x, r, c) - LLOO with parameter ρ ≥ 1 for polytope P
2: Let x1 be an arbitrary vertex of P and let C ≥ f(x1)− f(x∗)
3: α← σ

2βρ2

4: for t = 1, 2, ... do
5: rt ←

√
2C
σ e
−α

2
(t−1)

6: pt ← A(xt, rt,∇f(xt))
7: xt+1 ← xt + α(pt − xt)
8: end for

Theorem 4. Algorithm 2, instanciated with the LLOO implementation
given in Algorithm 4 (for which ρ =

√
nµ, see Section 2.4), satisfies that for

each t ≥ 1, the iterate xt+1 is feasible (xt+1 ∈ P) and

f(xt+1)− f(x∗) ≤ C exp
(
− σ

4βnµ2
t

)
,

where x∗ = argminx∈P f(x). Furthermore, after t iterations the algorithm
has made a total of t calls to the linear optimization oracle of P and t

gradient vector evaluations of f(x).

The theorem is a consequence of the following Lemma 2 and Lemma
8 (see Section 2.4). Lemma 2 proves the convergence rate of the algo-
rithm given a black-box access to a LLOO with some arbitrary parameter
ρ. Lemma 8 then gives an explicit construction of a LLOO with parameter
ρ =

√
nµ that requires only a single call to the linear optimization oracle

per invocation.
We now turn to analyze the convergence rate of Algorithm 2. The fol-

lowing lemma is of general interest and will be also used in the section on
online optimization.

Lemma 1. Assume that f(x) is β-smooth and let x∗ ∈ argminx∈P f(x).
Assume that on iteration t it holds that ∥xt − x∗∥ ≤ rt, and let xt+1 ←
xt + α(pt − xt), where pt is the output of a LLOO with parameter ρ with
respect to the input (xt, rt,∇f(xt)), and let α ∈ [0, 1]. Then it holds that

f(xt+1)− f(x∗) ≤ (1− α) (f(xt)− f(x∗)) +
β

2
α2min{ρ2r2t , D2}.
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Proof. By the β-smoothness of f(x) and the definition of xt+1 we have that

f(xt+1) = f(xt + α(pt − xt))

≤ f(xt) + α(pt − xt) · ∇f(xt) +
β

2
α2∥pt − xt∥2.

Since ∥xt − x∗∥ ≤ rt, by the definition of the oracle A it holds that i)
pt · ∇f(xt) ≤ x∗ · ∇ft(xt) and ii) ∥xt − pt∥ ≤ min{ρrt, D}. Thus we have
that

f(xt+1) ≤ f(xt) + α(x∗ − xt) · ∇f(xt) +
β

2
α2min{ρ2r2t , D2}.

Using the convexity of f(x) and subtracting f(x∗) from both sides we have,

f(xt+1)− f(x∗) ≤ (1− α) (f(xt)− f(x∗)) +
β

2
α2min{ρ2r2t , D2}.

Lemma 2. [Convergence of Algorithm 2] Denote ht = f(x∗)− f(xt). Then
for all t ≥ 1 it holds that

ht ≤ Ce
− σ

4βρ2
(t−1)

.

Proof. The proof is by a simple induction. For t = 1 we have by definition
that h1 = f(x∗)− f(x1) ≤ C.

Now assume that the lemma holds for t ≥ 1. This implies via the the
strong convexity of f(x) (see Eq. 2.1) that

∥xt − x∗∥2 ≤
2

σ
ht ≤

2C

σ
e
− σ

4βρ2
(t−1)

,

where the second inequality follows from the induction hypothesis.

Thus, for rt =
√

2C
σ e
− σ

4βρ2
(t−1) we have that x∗ ∈ P ∩Brt(xt). Applying

Lemma 1 with respect to xt, rt and using the induction hypothesis we have
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that

ht+1 ≤ (1− α)ht +
β

2
α2min{ρ2r2t , D2}

≤ (1− α)Ce−
σ

4βρ2
(t−1)

+
α2βρ2

σ
Ce
− σ

4βρ2
(t−1)

= Ce
− σ

4βρ2
(t−1)

(1− α+
α2βρ2

σ
).

By plugging the value of α from Algorithm 2 and using (1 − x) ≤ e−x we
have that

ht+1 ≤ Ce
− σ

4βρ2
t
.

2.4 Construction of a Local Linear Optimization
Oracle

In this section we present an efficient construction of a Local Linear Op-
timization Oracle for a polytope P, given only an oracle for minimizing a
linear objective over P.

As an exposition for our construction for arbitrary polytopes, we first
consider the specific case of constructing a LLOO for the probabilistic sim-
plex in Rn, that is the set Sn = {x ∈ Rn | ∀i ∈ [n] : xi ≥ 0 ,

∑n
i=1 xi = 1}.

Then we show how to generalize the simplex case to an arbitrary polytope.

2.4.1 Construction of a local linear optimization oracle for
the probabalistic simplex

The following lemma shows that in the case of the probabilistic simplex,
an LLOO could be implemented by minimizing a linear objective over the
intersection of the simplex and an ℓ1 ball. We then show that this problem
could be solved optimally by minimizing a single linear objective over the
simplex (without the additional ℓ1 constraint).

Lemma 3. Given a point x ∈ Sn, a radius r > 0 and a linear objective
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c ∈ Rn, consider the optimization problem

min
y∈Sn

y · c

s.t. ∥x− y∥1 ≤ d, (2.13)

for some d > 0. Let us denote by p∗ an optimal solution to Problem (2.13)
when we set d =

√
nr. Then p∗ is the output of a LLOO with parameter

ρ =
√
n for Sn. That is,

1. ∀y ∈ Sn ∩ Br(x) : p∗ · c ≤ y · c.

2. ∥x− p∗∥ ≤
√
nr.

Proof. The proof follows since for any x, y ∈ Rn it holds that 1√
n
∥x− y∥1 ≤

∥x− y∥ ≤ ∥x− y∥1.

Problem (2.13) with parameter d =
√
nr is solved optimally by the

following simple algorithm.

Algorithm 3 Local Linear Optimization Oracle for the Simplex
1: Input: point x ∈ Sn, radius r > 0, linear objective c ∈ Rn
2: d←

√
nr

3: ∆← min{d/2, 1}
4: i∗ ← argmini∈[n] c(i)
5: p+ ← ∆ · ei∗ {ei denotes the ith standard basis vector}
6: p− ← 0⃗
7: Let i1, ..., in be a permutation over [n] such that c(i1) ≥ c(i2) ≥ ... ≥
c(in)

8: Let k ∈ [n] be the smallest integer such that
∑k

j=1 x(ij) ≥ ∆
9: ∀j ∈ [k − 1] : p−(ij)← x(ij)

10: p−(ik)← ∆−
∑k−1

j=1 x(ij)
11: return p← x+ p+ − p−

The algorithm basically modifies the input point x by moving the largest
amount of mass which will not violate the constraint ∥x− p∥1 ≤ d from the
entries that correspond to the largest (signed) entries in the objective c to the
single entry that corresponds to the smallest (signed) entry in the objective
c.
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In Algorithm 3, we fix the value of d to
√
nr to correspond to Lemma

3. However, as the following lemma shows, the algorithm finds an optimal
solution to Problem (2.13) for any d ≥ 0.

Lemma 4. Fix d ≥ 0. Algorithm 3 finds an optimal solution to Problem
(2.13) with parameter d.

Proof. Fix an optimal solution p∗ to Problem (2.13). We can write p∗ in the
following way:

p∗ = x− p− + p+, (2.14)

where p−, p+ are non-negative. Note that without loss of generality we can
assume that p−, p+ are orthogonal. To see this, assume that there exists
an entry i such that p−(i) > 0 and p+(i) > 0. By replacing p−, p+ with
p− − min{p−(i), p+(i)}ei and p+ − min{p−(i), p+(i)}ei respectively, where
ei is the ith standard basis vector in Rn, we have that the new vectors still
satisfy Eq. (2.14), both are non-negative but now at least one of them has a
value of 0 in the ith entry. By repeating this process for every entry i that
is non-zero in both vectors we can make them orthogonal. As a result, it
must hold that x ≥ p− (otherwise p∗ is not be feasible). Furthermore, since
p∗ is feasible (∥p∗∥1 = 1), it must hold that ∥p+∥1 = ∥p−∥1.

Denote ∆ = min{d/2, 1} and assume now that ∥p+∥1 < ∆ (i.e. the ℓ1
constraint in Problem (2.13) is not tight for p∗), and denote w = x − p−.
It follows that there must exist a vector y ≥ 0 such that ∥y∥1 = ∆− ∥p+∥1
and w ≥ y. Now define

p̃− := p− + y, p̃+ := p+ + y.

Note that it holds that p∗ = x − p̃− + p̃+, ∥p̃+∥1 = ∥p̃−∥1 = ∆ and that
x ≥ p̃− (although p̃−, p̃+ are no longer orthogonal).

Thus we have that

p̃+ ∈ ∆ · Sn, p̃− ∈ (∆ · Sn) ∩ {z ∈ Rn | z ≤ x}.

Note also that for any p1 ∈ ∆ · Sn and p2 ∈ (∆ · Sn) ∩ {z ∈ Rn | z ≤ x}
it holds that x+ p1 − p2 is a feasible solution to Problem (2.13).
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Now we can write

(p∗ − x) · c = p̃+ · c− p̃− · c
≥ min

p1∈∆·Sn
p1 · c− max

p2∈∆·Sn : p2≤x
p2 · c. (2.15)

It is now a simple observation that the vectors p+, p− computed in Al-
gorithm 3 are exactly solutions to the optimization problems

min
p1∈∆·Sn

p1 · c, max
p2∈∆·Sn : p2≤x

p2 · c

respectively. Hence the lemma follows.

Two important observations regarding the implementation of Algorithm
3 are that i) the running time of the algorithm does not explicitly depends
on the dimension n but rather on the number of non-zero entries in x and
the time to compute the index i∗ and ii) computing the index i∗ is equivalent
to finding a vertex of Sn that minimizes the dot product with the objective
c, and hence is equivalent to a single call to the linear optimization oracle
of Sn.

2.4.2 Construction of a local linear optimization oracle for
an arbitrary polytope

We now turn to generalize the above simple construction for the simplex to
an arbitrary polytope P. A natural approach is to consider the polytope P
as convex hull of its vertices, i.e., we map a point x ∈ P to a point λx ∈ SN ,
where V = {v1, v2, ...} denotes the set of vertices of P and N = |V|. Given
a linear objective c ∈ Rn, consider its extension to RN given by the vector
cext ∈ RN such that cext(i) = vi · c, for all i ∈ [N ]. Now we can see that

min
y∈P

y · c ≡ min
λ∈SN

λ · cext. (2.16)

Thus, following our approach for the probabilistic simplex, it is tempting
to consider as the output of a LLOO for P, the point p =

∑N
i=1 λ

∗
i vi, where

λ∗ is an optimal solution to the following optimization problem:
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min
λ∈SN

λ · cext

s.t. ∥λ− λx∥1 ≤ d, (2.17)

where λx ∈ SN is a mapping of the LLOO input point - x to SN and d is a
positive scalar. Note that since λ∗ ∈ SN , the solution p is always a feasible
point of the polytope P.

The main question is whether we can find a value of d such that a solution
to Problem (2.17) indeed corresponds to the output of a LLOO for P with
a reasonable parameter ρ, as in the case of the simplex.

Our implementation of a LLOO for an arbitrary polytope P based on
solving Problem (2.17) and outputting the corresponding point in P is given
below (Algorithm 4). The algorithm is a clear extension of Algorithm 3 for
the simplex, and basically moves mass from vertices in the support of the
input point x (that is, vertices with non-zero weight in the convex decom-
position of x) which have large (signed) product with the linear objective c,
to a single vertex (possibly not in the support of the input point x) which
minimizes the dot product with c. The latter is just the result of calling the
linear optimization oracle of the polytope with respect to the linear objective
c.

Note that the algorithm assumes that the input point x is given in the
form of a convex combination of vertices of the polytope. Later on we show
that maintaining such a decomposition of the input point x is straightfor-
ward and efficient when the LLOO is used with any of the optimization
algorithms considered in this chapter. Note also that in the algorithm we
implicitly fix the value d in Problem (2.17) to d = 2

√
nψ
ξ r (recall that ψ, ξ

are geometric quantities of the polytope at hand, defined formally in Section
2.1), which is justified by our analysis.

It is important to note that, as in the case of Algorithm 3 for the simplex,
the running time of Algorithm 4 does not explicitly depends on the number
of vertices N , but only on the number of non-zeros in the vector λ (the
mapping of the input point x to SN ), the natural dimension of P - n and
the time to complete a single call to the linear optimization oracle of the
polytope - OP(·). In particular, observe that in the computations in lines
3-10 of the algorithm, one needs to consider only the vertices vi for which
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λi > 0.

Algorithm 4 Local Linear Optimization Oracle for Polytope P
1: Input: point x ∈ P such that x =

∑N
i=1 λivi, λ ∈ SN , radius r > 0,

linear objective c ∈ Rn

2: ∆← min{
√
nψ
ξ r, 1}

3: ∀j ∈ [N ]: ℓi ← vi · c
4: Let i1, ...iN be a permutation over [N ] such that ℓi1 ≥ ℓi2 ≥ ...
5: Let k be the smallest integer such that

∑j
i=1 λi ≥ ∆

6: p− ← 0⃗
7: for j = 1...k − 1 do
8: p− ← p− + λijvij
9: end for

10: p− ← p− +
(
∆−

∑k−1
j=1 λij

)
vik

11: v∗ ← OP(c)
12: p+ ← ∆ · v∗
13: return p← x+ p+ − p−

We turn to prove that there is indeed a choice for the parameter d in
Problem (2.17) (the one used to set ∆ in Algorithm 4) such that Algorithm
4 is indeed a LLOO for P. Towards this end, the main step is to show that
there exists a constant c(P), such that given a query point x ∈ P in the
form x =

∑N
i=1 λx(i)vi where λx ∈ SN , and a point y ∈ P, there exists a

mapping of y to SN , i.e., a point λy ∈ SN satisfying y =
∑N

i=1 λy(i)vi, such
that

∥λx − λy∥1 ≤ c(P)∥x− y∥. (2.18)

This fact is a consequence of Lemmas 5, 7. Lemma 5 considers a certain
way to map a point y ∈ P to λy ∈ SN which has useful properties. Lemma
7 then builds on these properties to give a consequence in the spirit of Eq.
(2.18) by considering the projection of the vector (x− y) onto a certain set
of constraints defining the polytope P.

Lemma 5. Let x ∈ P and λ ∈ SN such that x =
∑N

i=1 λivi, and let y ∈ P.
Write y =

∑N
i=1(λi−∆i)vi+(

∑N
i=1∆i)z for values ∆i ∈ [0, λi] ∀i ∈ [N ] and

z ∈ P, such that the sum ∆ =
∑N

i=1∆i is minimized. Then, for all i ∈ [N ]

for which ∆i > 0, there exists an index ji ∈ [m] such that A2(ji) · vi < b2(ji)
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and A2(ji) · z = b2(ji).

Proof. By way of contradiction, suppose the lemma is false and let i′ ∈ [N ]

such that ∆i′ > 0 and ∀j ∈ [m] it holds that if A2(j) · vi′ < b2(j) then
A2(j) · z < b2(j). Fixing some j ∈ [m] we consider two cases. If A2(j) · vi′ =
b2(j) then we have that

∀γ ≥ 0 : A2(j) · (z − γvi′) ≤ b2(j)− γb2(j) = (1− γ)b2(j). (2.19)

On the other hand, if A2(j) ·vi′ < b2(j), then by the assumption we have
that A2(j) · z < b2(j). Denote

δj := b2(j)−A2(j) · vi′ , ϵj := b2(j)−A2(j) · z,

and note that δj > 0 and ϵj > 0.

Now it holds that

∀γ ∈ [0,
ϵj
δj
] : A2(j) · (z − γvi′) = b2(j)− ϵj − γ(b2(j)− δj)

= (1− γ)b2(j)− (ϵj − γδj)
≤ (1− γ)b2(j). (2.20)

Let γ̃ = min{ ϵjδj | j ∈ [m], A2(j) · vi′ < b2(j)} (note that by definition γ̃ > 0,
since it is the minimum over a set of strictly positive scalars).

Combining Eq. (2.19), (2.20) for all j ∈ [m], we have that

∀γ ∈ [0,min{γ̃, 1}] : A2(z − γvi′) ≤ (1− γ)b2.

Since vi′ , z are both feasible, it also holds that A1(z − γvi′) = (1− γ)b1
and thus we arrive at the conclusion that

∀γ ∈ [0,min{γ̃, 1}] : z − γvi′ ∈ (1− γ)P. (2.21)

Thus in particular, by choosing γ ∈ (0,min{γ̃, 1}] ∩ (0,
∆i′
∆ ] (recall that

∆i′ > 0 and γ̃ > 0), we have that there exists w ∈ P such that z =
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(1− γ)w + γvi′ , and

y =
N∑
i=1

(λi −∆i)vi +∆z

=

N∑
i=1

(λi −∆i)vi +∆((1− γ)w + γvi′)

=

 N∑
i=1,i̸=i′

(λi −∆i)vi

+ (λi′ − (∆i′ − γ∆)− γ∆)vi′ +∆(1− γ)w

+γ∆vi′

=

 N∑
i=1,i̸=i′

(λi −∆i)vi

+ (λi′ − (∆i′ − γ∆)vi′ +∆(1− γ)w.

Thus, by defining ∀i ∈ [N ], i ̸= i′: ∆̃i = ∆i and ∆̃i′ = ∆i′ −γ∆, we have
that y =

∑N
i=1(λi − ∆̃i)vi + (

∑N
i=1 ∆̃i)w with

∑N
i=1 ∆̃i <

∑N
i=1∆i, which

contradicts the minimality of
∑N

i=1∆i.

In Lemma 7 we are going to examine the projection of a vector (x− y)
onto a set of constraints of P satisfied by a certain feasible point z ∈ P.
However, we would like that this set will not be too large. The follow-
ing simple lemma shows that it suffices to consider a basis for the set of
constraints satisfied by z.

Lemma 6. Let z ∈ P and denote C(z) = {i ∈ [m] |A2(i) · z = b2(i)} and
let C0(z) ⊆ C(z) be such that the set {A2(i)}i∈C0(z) is a basis for the set
{A2(i)}i∈C(z). Then given a point y ∈ P, if there exists i ∈ C(z) such that
A2(i) · y < b2(i), then there exists i0 ∈ C0(z) such that A2(i0) · y < b2(i0).

Proof. Fix z ∈ P and let C(z), C0(z) be as in the lemma. Assume by way of
contradiction that there exists y ∈ P and i ∈ C(z) such that A2(i) ·y < b2(i)

and for any j ∈ C0(z) it holds that A2(j) · y = b2(j). Since A2(i) is a linear
combination of vectors from {A2(j)}j∈C0(z), there exists scalars {αj}j∈C0(z),
not all zeros, such that A2(i) =

∑
j∈C0(z)

αjA2(j). From our assumption on
y it follows that

b2(i) > A2(i) · y =
∑

j∈C0(z)

αjA2(j) · y =
∑

j∈C0(z)

αjb2(j).
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However, since for all j ∈ C(z) it holds that A2(j) · z = b2(j), we have that

b2(i) = A2(i) · z =
∑

j∈C0(z)

αjA2(j) · z =
∑

j∈C0(z)

αjb2(j).

Thus we arrive at a contradiction and the lemma follows.

Lemma 7. Let x ∈ P and λ ∈ SN such that x =
∑N

i=1 λixi, and let y ∈ P.
Write y =

∑N
i=1(λi −∆i)vi + (

∑N
i=1∆i)z, where ∀i ∈ [N ] : ∆i ∈ [0, λi] and

z ∈ P, such that the sum
∑N

i=1∆i is minimized (as in Lemma 5). Then it
holds that

N∑
i=1

∆i ≤
√
nψ

ξ
∥x− y∥.

As a consequence, y could be mapped to a point λy ∈ SN such that

∥λ− λy∥1 ≤ 2
N∑
i=1

∆i ≤ 2

√
nψ

ξ
∥x− y∥.

Proof. Denote C(z) = {j ∈ [m] |A2(j)z = b2(j)} and note that according
to Lemma 5 it holds that C(z) ̸= ∅. Let C0(z) ⊆ C(z) such that the set
of vectors {A2(i)}i∈C0(z) is a basis for the set {A2(i)}i∈C(z). Denote by
A2,z ∈ R|C0(z)|×n the matrix A2 after deleting every row i /∈ C0(z) and recall
that by definition ∥A2,z∥ ≤ ψ. Then it holds that

∥x− y∥2 = ∥
∑

i∈[N ]:∆i>0

∆i(vi − z)∥2 ≥
1

∥A2,z∥2
∥A2,z

∑
i∈[N ]:∆i>0

∆i(vi − z)∥2

≥ 1

ψ2
∥

∑
i∈[N ]:∆i>0

∆iA2,z(vi − z)∥2

=
1

ψ2

∑
j∈C0(z)

 ∑
i∈[N ]:∆i>0

∆i(A2(j) · vi − b2(j))

2

.

Note that |C0(z)| ≤ n and that for any vector x ∈ R|C0(z)| it holds that
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∥x∥ ≥ 1√
|C0(z)|

∥x∥1. Thus we have that

∥x− y∥2 ≥ 1

nψ2

 ∑
j∈C0(z)

∣∣∣∣∣∣
∑

i∈[N ]:∆i>0

∆i(A2(j) · vi − b2(j))

∣∣∣∣∣∣
2

=
1

nψ2

 ∑
j∈C0(z)

∑
i∈[N ]:∆i>0

∆i(b2(j)−A2(j) · vi)

2

.

Combining Lemma 5 and Lemma 6, we have that for all i ∈ [N ] such
that ∆i > 0 there exists j ∈ C0(z) such that A2(j) · vi ≤ b2(j)− ξ. Hence,

∥x− y∥2 ≥ 1

nψ2

 ∑
i∈[N ]:∆i>0

∆iξ

2

=
ξ2

nψ2

 ∑
i∈[N ]:∆i>0

∆i

2

.

Thus we conclude that
∑N

i=1∆i ≤
√
nψ
ξ ∥x− y∥.

The following lemma establishes that Algorithm 4 is indeed a local lin-
ear optimization oracle for P with parameter ρ =

√
nµ (µ is a geometric

parameter of P that was formally defined in Section 2.1).

Lemma 8. Let p be the point returned by algorithm 4 when called with the
input x =

∑N
i=1 λivi, r, c. Then the following conditions hold:

1. p ∈ P.

2. ∥x− p∥ ≤
√
nµr.

3. ∀y ∈ Br(x) ∩ P it holds that c · y ≥ c · p.

Proof. Condition 1. holds since p is clearly given as a convex combination
of points in V. For conditions 2,3, note that we can write the returned point
p as p =

∑N
i=1(λi − ∆i)vi + ∆v∗, where ∆ is as in Algorithm 4, for all

i ∈ [N ] : ∆i ∈ [0, λi],
∑N

i=1∆i = ∆ and v∗ ∈ V. Thus we have that

∥x− p∥ = ∥
N∑
i=1

∆ivi −∆v∗∥ = ∥
N∑
i=1

∆i(vi − v∗)∥

≤
N∑
i=1

∆i∥vi − v∗∥ ≤ ∆D ≤
√
nψD
ξ

=
√
nµ,
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which gives condition 2.
Finally, for condition 3, note that from Algorithm 4 and Lemma 4 it

follows that the returned point p could be written as p =
∑N

i=1 λ
∗(i)vi such

that λ∗ is an optimal solution to Problem (2.17) with parameter d = 2
√
nψ
ξ r.

From Lemma 7 we have that for any point y ∈ Br(x)∩P, y could be mapped
to a point λy ∈ SN such that ∥λ− λy∥1 ≤ 2

√
nψ
ξ r. Thus we have that

p · c =
N∑
i=1

λ∗(i)vi · c = λ∗ · cext = min
λz∈SN : ∥λ−λz∥1≤2

√
nψ
ξ
r

λz · cext

≤ λy · cext =
N∑
i=1

λy(i)vi · c = y · c.

2.4.3 Maintaining a small decomposition of the input point
and efficient implementation of Algorithm 4

Algorithm 4 assumes that the input point x is given by its convex decomposi-
tion into vertices. All optimization algorithms in this chapter use Algorithm
4 in the following way: they give as input to Algrotihm 4 the current fea-
sible iterate xt ∈ P, and then given the output of Algorithm 4, denoted in
all algorithms by pt, they produce the next iterate xt+1 by taking a convex
combination xt+1 ← (1 − α)xt + αpt, for some parameter α ∈ [0, 1]. Note
that Algorithm 4 implicitly produces the convex decomposition of the re-
turned point pt and thus, given the convex decomposition of xt, updating it
to the convex decomposition of xt+1 is straightforward.

Moreover, denoting Vt ⊆ V the set of vertices that forms the con-
vex decomposition of xt (i.e. the vertices with non-zero weight in the de-
composition), it is clear from Algorithm 4 and the discussion above that
|Vt+1 \ Vt| ≤ 1, since at most a single vertex (v∗ in Algorithm 4) is added to
the decomposition.

This brings us to the following lemma.

Lemma 9. Algorithm 4 admits an implementation such that each invoca-
tion of the algorithm requires a single call to the oracle OP and additional
O(T (n+logT )) time, where T is the overall number of calls to the algorithm.
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Proof. Clearly Algorithm 4 calls the oracle OP only once per invocation.
The complexity of all other operations depends on the number of non-zeros
in the vector λ, i.e., the number of vertices in the convex decomposition of
the input point x. As discussed above, if we denote by xt, xt+1 the inputs to
the t and t+1 times Algorithm 4 was invoked respectively, and by Nt, Nt+1

the number of vertices in the convex decomposition of xt, xt+1 respectively,
then Nt+1 ≤ Nt+1. Thus, if the algorithm is invoked for a total number of
T times and the initial point - x1 is a vertex of P, then at any time t ∈ [T ] it
holds that Nt ≤ T . Since all other operations except for calling OP consist of
computing Nt inner products between vectors in Rn and sorting Nt scalars,
the lemma follows.

Note that we can get rid of the linear dependence on T in the bound in
lemma 9 by decomposing the iterate xt into a convex sum of fewer vertices
in case the number of vertices in the current decomposition - Nt becomes
too large. From Carathéodory’s theorem we know that we can find such a
decomposition with at most n+1 vertices. Moreover, for many polytopes of
interest (such as the flow polytope), there is an even more efficient algorithm
for computing such a decomposition (however these are beyond the scope of
this work). It follows from previous discussions that we will need to invoke
such a decomposition procedure only every O(n) iterations which will keep
the amortized iteration complexity low.

Another generic approach to the above problem that relies only on the
use of the linear optimization oracle - OP (and which might also be more
efficient), is to “bootstrap” Algorithm 2 to compute a more compact decom-
position of xt. If Nt is too large we can compute a new decomposition of the
input point xt by solving the optimization problem miny∈P ∥xt − y∥2 up to
some precision r2t , where rt is the current radius parameter of the LLOO.
Using Theorem 4, the result will be a point x̃t given by a decomposition into
O(nµ2 log(1/rt)) vertices of P such that ∥x̃t − xt∥ ≤ rt. Now, by using the
point x̃t to maintain the input to the LLOO and replacing the input rt to
LLOO with r̃t = 2rt we get (via the triangle inequality) a modified LLOO
with parameter ρ̃ = 2ρ+1 = 2

√
nµ+1. As discussed above, we will need to

invoke this decomposition procedure only every O(nµ2 log(1/rt)) iterations
which leads to the following lemma.

Lemma 10. Assume that on every invocation of the LLOO algorithm, the
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input r to the LLOO is lower-bounded by some r0 > 0. Then there exists an
implementation for a LLOO with parameter ρ = 2

√
nµ + 1, such that the

amortized linear optimization oracle complexity per iteration is 2, and the
additional amortized complexity per iteration is

O
(
nµ2 log(1/r0)

(
n+ log(nµ2 log(1/r0)

))
.

The proof follows the same lines as that of Lemma 9.
We note that in our online algorithms the lower bound r0 in Lemma 10

will always satisfy: log(1/r0) = O(log(T )), where T is the overall length of
the game, and thus the running time per iteration will depend only loga-
rithmically on T .

It is also worth mentioning that we can significantly accelerate Algorithm
4 by using parallel computations. Note that all dot product computations
in line 3 of the algorithm (recall again that in practice we need to carry out
these computations only for vertices vi for which λi > 0) are independent of
each other and could be computed in parallel.

2.4.4 Linear-space implementation of the local linear opti-
mization oracle

It is clear from the description of Algorithm 4 and from the discussion in
subsection 2.4.3 that our construction of a generic LLOO requires to store
in memory and maintain at all times a convex decomposition of the query
point for the LLOO algorithm. Indeed this requirement could be impractical
in certain scenarios due to the possible large memory needed, and the time
required to compute a smaller decomposition from time to time. Here we
show that for a large and important family of polytopes, Algorithm 4 could
be implemented using only O(n) memory, not including the memory pos-
sibly required to implement the linear optimization oracle of the polytope.
That is, we present an implementation that avoids the need to store an ex-
plicit convex decomposition of the query point altogether. This improvement
comes however at the price of increasing the number-of-calls-per-iteration
to the linear optimization oracle.

Towards this end, here we assume that the polytope P is naturally given
in the following algebraic form1:

1It is important to note that while any polytope could be described according to (2.22),
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P = {x ∈ Rn | Ix ≥ 0⃗, Ax = b}, (2.22)

In particular, note that almost all examples given in Section 2.1.1 fall
into this case.

Our linear-space LLOO implementation is given in Algorithm 5. The
idea is that we don’t have to compute an explicit convex-decomposition of
the query point x in order to move mass from vertices with large product
with the objective c to the vertex that minimizes the product with c. We
can instead do this iteratively, “pilling off” one “bed vertex” at a time from
x.

Algorithm 5 Linear-space Local Linear Optimization Oracle
1: Input: point x ∈ P such that x =

∑N
i=1 λivi, λ ∈ SN , radius r > 0,

linear objective c ∈ Rn

2: ∆← min{
√
nψ
ξ r, 1}

3: ∆̃← 0
4: x̃← x
5: Let ω be a scalar such that ω > 2∥c∥ξ maxu∈P ∥u∥ {think of ω as ∞}
6: repeat
7: Let c̃ ∈ Rn be such that ∀i ∈ [n]

c̃(i) =

{
−c(i) x̃(i) > 0
ω x̃(i) = 0

8: v ← OP(c̃)
9: Let η be the largest scalar in [0,∆− ∆̃] such that x̃− ηv ≥ 0⃗

10: x̃← x̃− ηv
11: ∆̃← ∆+ η
12: until ∆̃ = ∆
13: v∗ ← OP(c)
14: return p← x̃+∆v∗

Before proving the correctness of Algorithm 5, we first prove the following

altering the natural description of the polytope also affects the proprities of the objective
function f(x) which we wish to minimize over the polytope. In particular, changing the
description may turn a strongly-convex function f into a non-strongly-convex function.
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auxiliary lemma.

Lemma 11. The loop in Algorithm 5 is executed at most n times, and at
the beginning of the ith iteration of the loop it holds that x̃ ∈ (1−

∑i−1
j=1 ηj)P

and x = x̃+
∑i−1

j=1 ηjvj, where v1, ..., vi−1 are the values of v in the previous
iterations and η1, ..., ηi−1 > 0 are the corresponding values of η.

Proof. We prove the second part of the lemma by induction and on the way
derive the proof of the first part. Observe that the claim clearly holds for
i = 1. Consider now an iteration i ≥ 1 and assume that the claim holds.
We are going to show that at the end of the current iteration of the loop
the claim still holds.

First we show that ηi > 0. This follows since ηi = 0 if and only if there
exists an entry j ∈ [n] such that x̃(j) = 0 and vi(j) > 0, which in turn,
according to the definition of c̃, implies that

vi · c̃ = vi(j)c̃(j) +
∑
l ̸=j

vi(l)c̃(l) ≥ vi(j)c̃(j) +
∑

l∈[n]: x̃(l)>0

vi(l)c(l)

≥ ξω − ∥v∥∥c∥ > ∥c∥max
u∈P
∥u∥, (2.23)

where the first inequality follows from the definition of c̃ and the fact that
P contains only non-negative vectors, the second inequality follows from
the Cauchy-Schwartz inequality and since by definition of ξ, for all y ∈ P
and l ∈ [n] it holds that if y(l) ̸= 0 then y(l) ≥ ξ, and the last inequality
follows from the definition of ω. However, on the other hand, according to
the induction hypothesis we have that x̃ could be decomposed to vertices of
P (with non-negative weights that add up to 1 − ∆̃). It thus follows that
there exist some vertex v of P and weight λ > 0 such that x̃ ≥ λv, which
in turn implies that v · c̃ = v · c ≤ ∥v∥∥c∥, hence, when contrasted with Eq.
(2.23), contradicts the optimality of vi.

Now, let us denote x̃′ = x̃−ηivi, i.e. x̃′ is the value of x̃ at the end of the
ith iteration. By the definition of ηi it follows that x̃′ ≥ 0. Moreover, since
according to the induction hypothesis it holds that x̃ ∈ (1 −

∑i−1
j=1 ηj)P,

it follows that Ax̃ = (1 −
∑i−1

j=1 ηj)b. Since vi ∈ P, it follows that Ax̃′ =
(1 −

∑i
j=1 ηi)b. Thus we have that x̃′ ∈ (1 −

∑i
j=1)P. By “rolling” the

induction up to the first iteration it follows that x = x̃′+
∑i

j=1 ηivi, and the
claim follows.
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In order to bound the number of iterations performed by the loop let us
consider the value of η on some iteration. if η obtains its maximal allowed
value ∆ − ∆̃, then the loop terminates after this iteration. Otherwise, it
follows that for any η̃ > η, there exists some j ∈ [n] such that x̃(j)− η̃v(j) <
0. Thus, we have that the number of zeros in x̃ at the end of the iteration
is larger by at least one than its value at the beginning of the iteration, and
thus the loop may execute at most n times.

The following lemma establishes the correctness and complexity of Al-
gorithm 5.

Lemma 12. Algorithm 5 correctly implements Algorithm 4, uses only O(n)

space, makes at most n+ 1 calls to the linear optimization oracle of P, and
uses O(n2) additional time.

Proof. First we note that the bound on the space used by the algorithm
is clear from the description of the algorithm. The bounds on the number
of calls to the oracle OP and on the additional time complexity follows
immidiately from the bound on the number of iterations performed by the
loop, given in Lemma 11.

Note that in order to prove the correctness of the algorithm it suffices
to show that there exists a convex decomposition for x, x =

∑k
i=1 λivi that

is monotonically decreasing with respect to c, i.e. for any two vertices vi, vj
in the decomposition it holds that i ≤ j if and only if c · vi ≥ c · vj , and that
Algorithm 5 “pills off” the vertices from x according to the order v1, v2, ..., vk
until a total “probability mass” of ∆ has been removed.

Lemma 11 indeed shows that the loop in Algorithm 5 pills off vertices
from the convex-decomposition of x until a mass of ∆ has been removed. It
only remains to show that these vertices and the convex-decomposition of
the remaining vector x̃ are indeed monotonically-ordered according to c.

Let
∑n

i=1 ηivi be a convex decomposition of x such that v1, ..., vk,η1, ..., ηk
correspond to the values computed by the iterations of the loop and vk+1, ..., vn,
ηk+1, ...ηn correspond to the decomposition of the residue x̃ (not computed
explicitly by Algorithm 5).

Suppose now that there exists some i ∈ {1, .., k} and j ∈ {i+1, ..., n} such
that c·vi < c·vj (hence a contradiction to our monotonic-order claim). Let us
denote by c̃i and x̃i the values of c̃ and x̃ on iteration i (before the update of
x̃), respectively. It follows from Lemma 11 that supp(vj) ⊆ supp(x̃i), where

58



supp(y) := {i ∈ [n] | y(i) ̸= 0} (this follows since, as a consequence of the
lemma, we can write the decomposition of x̃i using vj with positive weight,
and since vj ≥ 0⃗). Thus, it follows from the definition of c̃ that

vj · c̃i = −vj · c < −vi · c = vi · c̃i,

which contradicts the optimality of vi.

2.5 Application to Submodular Function Minimiza-
tion

In this section we consider the problem of Submodular Function Minimiza-
tion (SFM). While SFM is solvable in polynomial time [67], it was observed
that in practice, an algorithm known as the Minimum-Norm-Point Algo-
rithm or Wolfe’s Algorithm, which was originally suggested by Wolfe in 1976
[93], exhibits much better running times than all currently known polyno-
mial time algorithms for SFM [67, 78]. On the other-hand, the complexity
of Wolfe’s algorithms is not well understood and it is currently not known
if it runs in polynomial time [67].

In this section, we first show how Algorithm 2 and the corresponding
Theorem 4 could be used to solve the SFM problem in pseudo-polynomial
time (Theorem 6), and then draw a strong connection to Wolfe’s algorithm.

Consider a ground set E of n elements. Without loss of generality we
can think of E as E = {1, 2, .., n}.

Definition 5 (Submodular function). A function f : 2E → R is called
submodular if for any two subsets X,Y ⊆ E it holds that

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

The problem of SFM is the following optimization problem:

min
X∈2E

f(X), (2.24)

where f is submodular over the ground set E. Throughout this section we
are going to assume without loss of generality that f is integral and that
f(∅) = 0. Furthermore, as standard, we assume that the function f is given
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by a value oracle Of : 2E → Z, that given a subset S ⊆ E returns the value
f(S). For purposes of measuring the complexity of algorithms for solving
Problem (2.24), we denote by Tf the worst case time required to evaluate f
on any subset S ⊆ E, and we denote by F the maximal value of f over any
subset of E, that is F := maxS∈2E |f(S)|.

Instead of solving Problem (2.24) directly, we are going to consider con-
vex optimization over a related polytope known as the base polyhedron of
f .

Definition 6 (Base polyhedron). The base polyhedron associated with a
submodular function f : 2E → R is given by

Pf := {x ∈ Rn | ∀S ∈ 2E :
∑
i∈S

xi ≤ f(S),
∑
i∈E

xi = f(E)}.

The following theorem, originally due to Fujishige, establishes that Prob-
lem (2.24) is equivalent to minimizing a certain continuous smooth and
strongly convex function over the base polyhedron of f , Pf .

Theorem 5 ([32], Sec. 7.1.(a)). Let f : 2E → R be submodular. Let
x∗ = argminx∈Pf ∥x∥2, and let X∗ = {e ∈ E |x∗(e) < 0}. Then X∗ is a
minimizer of f over 2E.

Since the function g(x) = ∥x∥2 is smooth and strongly convex, we can
solve SFM by applying Algorithm 2 and the corresponding Theorem 4 to
finding the minimum-norm point in Pf .

Theorem 6. Fix ϵ > 0. Algorithm 2, applied to the minimum-norm-point
problem over the base polyhedron Pf given by an integral submodular func-
tions, finds a point x ∈ Pf such that

∥x∥ ≤ min
y∈Pf

∥y∥ − ϵ

after making O
(
n4F 2 log(1/ϵ)

)
iterations and O

(
n5F 2 log(1/ϵ)

)
calls to the

value oracle of f .

In order to formally derive Theorem 6 from Theorem 4, we require two
missing ingredients: i) an efficient implementation of a linear optimization
oracle for Pf , and ii)bounding the parameter µ(Pf ).
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Luckily, the first issue is easily addressed since there is a well known and
simple greedy algorithm for linear optimization over the base polyhedron
Pf .

Theorem 7 ([67], Theorem 2.1). Let w ∈ Rn be a linear objective and let
e1, ..., en be a permutation over [n] such that w(e1) ≤ ... ≤ w(en). Then the
point y ∈ Rn given by

y(ei) = f({e1, e2, ..., ei})− f({e1, e2, ..., ei−1}) ∀i ∈ [n],

is a vertex of Pf and a minimizer of the dot product x·w over Pf . Moreover,
y can be computed in O(nTf + n logn) time.

In order to bound µ(Pf ) we have the following lemma.

Lemma 13. Given a submodular function f : 2E → R that takes integral
values, it holds that µ(Pf ) = O(n3/2F ).

Proof. Note that according to Definition 6 and our assumption that f is
integral, Pf could be described in the following algebraic form:

Pf := {x ∈ Rn |Ax ≤ b, 1⃗ · x = f(E)},

where A ∈ {0, 1}2|E|×n, b ∈ Z2|E| and 1⃗ denotes the all-ones vector.
Note thatA is not normalized to have unit-length rows as assumed in Sec-

tion 2.1. However, we can still bound ψ(Pf ), ξ(Pf ) and µ(Pf ) as described
in Section 2.1 and nothing in Algorithm 2 or its analysis will change.

Since all entries of A are in {0, 1}, given a matrix Mn×n whose rows
are linearly-independent rows of A, it follows that ∥M∥ ≤ n (by taking all
entries of M to equal 1). Thus we can upper bound ψ(Pf ) by n. Note that
this bound is tight up to a small constant since M might be the following
matrix:

M =


1 1 1 1 · · ·
0 1 1 1 · · ·
0 0 1 1 · · ·
0 0 0 1 · · ·
...

...
... . . . . . .

 .
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In order to bound the quantity ξ(Pf ), we note that since f is integral,
for any row Ai of A it holds that b(i) is also integral. Moreover, according to
to structure of the vertices of Pf described in Theorem 7, it follows that if f
is integral, then the vertices of Pf are also integral (note that for any vertex
v of Pf there exists a vector w ∈ Rn, such that v is the only vertex that
minimizes the dot product with w. Hence, Theorem 7 exactly characterizes
the structure of the vertices of Pf ). Since the row Ai is also integral, it
follows that for any vertex v, either v · Ai = b(i) or v · Ai ≤ b(i)− 1. Thus,
we conclude that ξ(Pf ) ≥ 1.

In order to bound the diameter of Pf we use:

D(Pf ) ≤ 2 max
v∈V(Pf )

∥v∥ ≤ 2
√
n max
v∈V(Pf )

∥v∥∞

≤ 4
√
n max
v∈V(Pf )

max
S∈2E

|f(S)| = 4
√
nF,

where the last inequality follows from the structure of the vertices of Pf
given in Theorem 7, and the last equality follows from the definition of F .

Thus, we conclude that µ(Pf ) = O(n3/2F ).

2.5.1 Connection to Wolfe’s algorithm

Wolfe’s algorithm [93] is an algorithm for finding the point of minimal ℓ2
norm in a given polytope P, i.e. it solves the optimization problem:

min
x∈P
{g(x) := ∥x∥2}. (2.25)

The algorithm is closely related to the conditional gradient method: on each
iteration t, Wolfe’s algorithm finds a vertex pt of P that minimizes the dot
product v ·xt, where xt is the current feasible iterate of the algorithm. Indeed
this step is equivalent to the invocation of the linear optimization oracle in
the conditional gradient method, since xt ∝ ∇g(xt).

Wolfe’s algorithm differs from the standard conditional gradient method
in the following way: instead of producing the next iterate by taking a convex
combination: xt+1 ← xt+α(pt−xt) for some α ∈ [0, 1], as in the CG method,
it produces xt+1 by a applying a sophisticated secondary optimization step
over the convex hull of all vertices in the convex decomposition of xt and
the new vertex pt. Thus, both methods perform a single call to the linear
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optimization oracle of the polytope on each iteration and produce the next
iterate by combining the new and old vertices via some convex combination.

Until recently, no sub-exponential-time analysis was known for Wolfe’s
algorithm. Recently, the authors in [16] proved that Wolfe’s algorithm con-
verges with rate O(nD2/t), which has the same dependence on D, t as the
CG method (Theorem 3), but is worse by a factor of n. Moreover, the sec-
ondary optimization step in Wolfe’s algorithm comes with a computational
price: it requires O(n3) time per iteration. The authors in [16] also proved a
robust version of Fujishige’s theorem (Theorem 5) that shows that in order
to find a minimizer of a submodular function f , it suffices to approximate
Problem (2.25) up to precision ϵ = Θ(n−1). Thus, Wolfe’s algorithm finds a
minimizer of f after making at most O(n5F 2) calls to the value oracle of f ,
which is the same, up to a logarithmic factor, as our result in Theorem 6.

Theorem 4 shows that using only a linear optimization oracle, it is pos-
sible to solve the minimum-norm-point problem exponentially faster than
the most advanced analysis of Wolfe’s algorithm.

We conclude this section with the following open question which we
believe is of interest: is it possible, by exploiting the rich proprieties of
submodular functions and the base polyhedron, to modify the analysis of
Algorithm 2, so it solves the SFM problem in fully polynomial time? Due
to the practical success of Wolfe’s algorithm for SFM, such a result may be
of true practical interest.

2.6 Algorithms for Online and Stochastic Convex
Optimization

In this section we present algorithms for the general setting of online con-
vex optimization that are suitable when the decision set is a polytope. We
present regret bounds for both general convex losses and for strongly convex
losses. These regret bounds imply convergence rates for stochastic convex
optimization and non-smooth convex optimization over polyhedral sets as
described in subsections 2.1.3, 2.1.3. In the sequel we also present an algo-
rithm for the bandit setting.

Our algorithm for online convex optimization in the full information
setting is given below (Algorithm 6) . The algorithm is based on the ideas
presented in Subsection 2.1.3, i.e., iteratively approximating the steps of
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a regret-optimal algorithm known as Regularize Follow the Leader using
the update step of our Algorithm 2, which amounts to a single call a local
linear optimization oracle (which in turn, given the construction presented
in Section 2.4, amounts to a single call to the linear optimization oracle of
the polytope).

For ease of presentation, we use a standard assumption that the algo-
rithm has knowledge on several parameters of the problem including the
length of the game - T , an upper bound on the magnitude of the gradients
of the observed loss functions - G, and a lower bound on the strong convexity
of the observed functions - σ (which may also be zero) 2 .

Algorithm 6 LLOO-based Online Convex Optimization
1: Input: horizon T , upper bound on gradients G, strong convexity param-

eter σ, A(x, r, c) - LLOO with parameter ρ for P

2: Set: α←
{

(3ρ2)−1 σ = 0
(5ρ2)−1 σ > 0

3: Set: η ← D
18Gρ

√
T
, T0 ← (25ρ2)2

4: Let x1 be an arbitrary vertex in V
5: for t = 1...T do
6: Play xt
7: Receive ft(x)
8: Define the function:

Ft(x) =

{
η
(∑t

τ=1∇fτ (xτ ) · x
)
+ ∥x− x1∥2 σ = 0(∑t

τ=1∇fτ (xτ ) · x+ σ
2∥x− xτ∥

2
)
+ T0

σ
2∥x− x1∥

2 σ > 0

9: Set:

rt ←

 D√
T

(
ρ+ 1

18ρ

)
σ = 0

2(G+σD)
σ(t+T0)

(60ρ2 + 1) σ > 0

10: pt ← A(xt, rt,∇Ft(xt))
11: xt+1 ← xt + α(pt − xt)
12: end for

We prove the following two main theorems.
2in case one of these bounds is unknown, one can use standard techniques such as the

well known “doubling trick”, which increases the overall regret only by a log factor.
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Denote G = supx∈P,t∈[T ] ∥∇ft(x)∥ and recall that we have a construction
for a local linear optimization oracle with parameter ρ = O(

√
nµ) for the

decision set P.

Theorem 8. In case Algorithm 6 is instanciated with the LLOO described
in Section 2.4 (Algorithm 4), then for arbitrary convex loss fundtions, the
regret of the algorithm is O(GDµ

√
nT ).

Theorem 9. In case Algorithm 6 is instanciated with the LLOO described
in Section 2.4 (Algorithm 4), then for σ-strongly convex loss functions, the
regret of the algorithm is O(σD2ρ4 + (G+ σD)2nµ2/σ) logT ).

Applying the above two theorems with the reduction of stochastic op-
timization to online optimization described in Subsection 2.1.3, yields the
following two corollaries.

Corollary 1. Let F (x) = Ef∼D[f(x)], where D is a distribution over ar-
bitrary convex functions, and assume the availability of an oracle OD for
sampling functions from the distribution D. Then running Algorithm 6,
instanciated with the LLOO described in Section 2.4, with a sequence of T
loss functions sampled i.i.d. using OD and denoting x̄T = 1

T

∑T
t=1 xt (the

average of iterates), we have that

E[F (x̄T )]− min
x∗∈P

F (x∗) = O

(
GD
√
nµ√
T

)
.

Corollary 2. Let F (x) = Ef∼D[f(x)], where D is a distribution over σ-
strongly convex functions, and assume the availability of an oracle OD for
sampling functions from the distribution D. Then running Algorithm 6,
instanciated with the LLOO described in Section 2.4, with a sequence of
T loss functions sampled i.i.d. using OD and denoting x̄T = 1

T

∑T
t=1 xt

(average of iterates), we have that

E[F (x̄T )]− min
x∗∈P

F (x∗) = O

(
σ2D2ρ4 + (G+ σD)2nµ2 log(T )

σT

)
.

In the following two subsections we prove Theorems 8, 9.
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2.6.1 Analysis for general convex losses

In this subsection we analyze the regret of Algorithm 6 in case the observed
loss functions are all convex but not necessarily strongly convex, that is,
σ = 0.

Consider the sequence of points {x∗t }T+1
t=1 such that for all t ∈ [T+1], x∗t =

argminx∈P Ft−1(x), where for all t ∈ [T ], Ft(x) is as defined in Algorithm 6
(for σ = 0) and for t = 0 we define F0(x) := ∥x− x1∥2 . The regret analysis
is comprised of two parts. Part 1 shows that on any time t, the point xt
played by Algorithm 6 is close to the corresponding point x∗t . Thus by a
Lipschitz argument, the cumulative loss of the sequence {xt}Tt=1 is close to
that of {x∗t }Tt=1. Part 2 then follows the analysis of an algorithm known as
Regularized Follow the Leader (see [46]) to claim that the sequence of points
{x∗t }Tt=1 achieves low regret with respect to the sequence of observed loss
functions.

Lemma 14. Fix ϵ > 0. Let

η =

√
ϵ

18Gρ2
, α =

1

3ρ2
, rt =

√
ϵ+ ηG ∀t ∈ [T ].

Then, the sequence of points {xt}Tt=1 produced by Algorithm 6 satisfies
that for all t ∈ [T ], ∥xt − x∗t ∥ ≤

√
ϵ.

Proof. Observe that on any time t ∈ {0, 1, ..., T} it holds that the function
Ft(x) is 2-strongly convex and 2-smooth.

We prove by induction that for all t ∈ [T ] it holds that Ft−1(xt) −
Ft−1(x

∗
t ) ≤ ϵ. By the strong-convexity of Ft−1 (Eq. 2.1) this yields that

∥xt − x∗t ∥ ≤
√
ϵ.

The proof is by induction on t. For t = 1 it holds that x1 = x∗1
and thus the claim holds. Assume now that for time t ≥ 1 it holds that
Ft−1(xt)− Ft−1(x∗t ) ≤ ϵ. By the strong-convexity of Ft−1(x) and the induc-
tion hypothesis we have that

∥xt − x∗t ∥ ≤
√
ϵ. (2.26)
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By the definition of Ft(x) and the optimality of x∗t we have that

Ft(x
∗
t )− Ft(x∗t+1) = Ft−1(x

∗
t )− Ft−1(x∗t+1) + η∇ft(xt) · (x∗t − x∗t+1)

≤ ηG∥x∗t+1 − x∗t ∥,

and thus again by the strong convexity of Ft(x) we have that

∥x∗t+1 − x∗t ∥ ≤ ηG. (2.27)

Combining Eq. (2.26), (2.27) we have that

∥xt − x∗t+1∥ ≤
√
ϵ+ ηG.

Using again the induction hypothesis, we have that

Ft(xt)− Ft(x∗t+1) = Ft−1(xt)− Ft−1(x∗t+1) + η∇ft(xt) · (xt − x∗t+1)

≤ ϵ+ ηG∥xt − x∗t+1∥ ≤ ϵ+ ηG
√
ϵ+ η2G2. (2.28)

Setting rt =
√
ϵ+ηG, we can apply Lemma 1 with respect to Ft(x), xt, rt

and get,

Ft(xt+1)− Ft(x∗t+1) ≤ (1− α)(Ft(xt)− Ft(x∗t+1)) + α2ρ2
(√
ϵ+ ηG

)2
.

Plugging Eq. (2.28) we have that

Ft(xt+1)− Ft(x∗t+1) ≤ (1− α)
(
ϵ+ ηG

√
ϵ+ η2G2

)
+2α2ρ2

(
ϵ+ ηG

√
ϵ+ η2G2

)
=

(
ϵ+ ηG

√
ϵ+ η2G2

)
(1− α+ 2α2ρ2).

Setting α = 1
3ρ2

we get that

Ft(xt+1)− Ft(x∗t+1) ≤
(
ϵ+ ηG

√
ϵ+ η2G2

)(
1− 1

9ρ2

)
.

Finally, plugging η =
√
ϵ

18Gρ2
gives

Ft(xt+1)− Ft(x∗t+1) ≤ ϵ
(
1 +

1

9ρ2

)(
1− 1

9ρ2

)
< ϵ.
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We also need the following lemma, originally proved in [56], that states
that playing on each time t the point in P that minimizes the loss up to
time t (including), yields zero regret. A proof is given in Section 2.9 for
completeness.

Lemma 15. Let {ft(x)}Tt=1 be a sequence of loss functions and let {w∗t }Tt=1 be
a sequence of points such that for all t ∈ [T ], w∗t ∈ argminw∈P

∑t
τ=1 fτ (w).

Then it holds that

T∑
t=1

ft(w
∗
t )−min

w∈P

T∑
t=1

ft(w) ≤ 0.

We are now ready to prove Theorem 8.

Proof. Denote x∗ ∈ argminx∈P
∑T

t=1 ft(x). We define a sequence of func-
tions {f̃t(x)}Tt=1 as follows: f̃1(x) = ∇f1(x1) · x + 1

η∥x− x1∥
2 and f̃t(x) =

∇ft(xt) · x for all t ≥ 2. Note that for all t ∈ [T ] we have that Ft(x) =

η
∑t

τ=1 f̃τ (x). Recall that the sequence of points {x∗t }T+1
t=1 satisfies that

x∗t = argminx∈P Ft−1(x). Hence, for all t ∈ [T ], x∗t+1 = argminx∈P Ft(x).
Thus, by Lemma 15 we have that

T∑
t=1

f̃t(x
∗
t+1)−

T∑
t=1

f̃t(x
∗) =

T∑
t=1

∇f(xt) · (x∗t+1 − x∗)

+
1

η
(∥x∗2 − x1∥2 − ∥x∗ − x1∥2) ≤ 0.

Rearranging and using ∥x∗ − x1∥ ≤ D we have that

T∑
t=1

∇ft(xt) · (x∗t+1 − x∗) ≤
D2

η
. (2.29)

Fix t ∈ [T ]. Since Ft(x) is 2-strongly convex, using Eq. (2.1) we have
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that

∥x∗t − x∗t+1∥2 ≤ Ft(x
∗
t )− Ft(x∗t+1)

= Ft−1(x
∗
t )− Ft−1(x∗t+1) + η∇ft(xt) · (x∗t − x∗t+1)

≤ ηG∥x∗t − x∗t+1∥, (2.30)

where the last inequality follows from the optimality of x∗t with respect to
Ft−1(x) and the Cauchy-Schwartz inequality.

Combining Eq. (2.29) and Eq. (2.30) for all t ∈ [T ] via the Cauchy-
Schwartz inequality we have that

T∑
t=1

∇ft(xt) · (x∗t − x∗) ≤
D2

η
+ TηG2.

Rearranging and using the Cauchy-Schwartz inequality again we have
that

T∑
t=1

∇ft(xt) · (xt − x∗) ≤
D2

η
+ TηG2 +G

T∑
t=1

∥xt − x∗t ∥.

Fix ϵ = (Dρ)2

T . Applying Lemma 14 with respect to our choice of ϵ and
setting η accordingly (and recalling that ρ ≥ 1), we have that

T∑
t=1

ft(xt)− ft(x∗) ≤
T∑
t=1

∇ft(xt) · (xt − x∗) = O(GDρ
√
T ),

where the first inequality follows from convexity of each ft(x). The theorem
now follows since according to our results from Section 2.4 we can assume
that ρ =

√
nµ.

2.6.2 Analysis for strongly convex losses

Here we analyze the regret of Algorithm 6 in case all loss function are at
least σ-strongly convex for some σ > 0. The analysis goes along the same
lines as the analysis for the non-strongly convex case, but requires a few
modifications.
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As in the previous subsection we define the sequence {x∗t }T+1
t=1 such that

x∗t = argminx∈P Ft−1(x), where Ft(x) for t ∈ {1, ..., T} is defined as in
Algorithm 6 (for σ > 0) and in addition we define F0 := T0

σ
2∥x− x1∥

2.

Lemma 16. For any t ∈ [T ], the function f̃t(x) = ∇ft(xt) · x+ σ
2 ∥x− xt∥

2

is L = G+ σD Lipschitz over P.

Proof. Fix two points y, z ∈ P. Since f̃t(x) is convex we have that

f̃t(y)− f̃t(z) ≤ ∇f̃t(y) · (y − z) = (∇ft(xt) + σ(y − xt)) · (y − z)
≤ ∥∇ft(xt) + σ(y − xt)∥ · ∥y − z∥ ≤ (G+ σD)∥y − z∥,

where the last inequality uses the triangle inequality and the upper bounds
G,D for ∥∇ft(xt)∥ and ∥y − xt∥ respectively. Since the above inequality is
symmetric in y, z, the lemma follows.

The following Lemma is analogues to Lemma 14 for the non-strongly
convex case.

Lemma 17. Let L = G+ σD, α = 1
5ρ2

and T0 = (25ρ2)2. Let {ϵt}Tt=1 be a
sequence of positive reals such that ϵt = (60ρ2L)2

σ(t+T0)
∀t ∈ [T ]. Let

rt =

√
4ϵt

σ(t+ T0)
+

2L

σ(t+ T0)
∀t ∈ [T ].

Then, for any t ∈ [T ] it holds that ∥xt − x∗t ∥ ≤
√

ϵt
σ(t−1+T0) .

Proof. The proof is similar to that of Lemma 14. Observe that on any time
t ∈ {0, 1, ..., T} it holds that the function Ft(x) is σ(t+ T0)-strongly convex
and σ(t+ T0)-smooth.

We prove that for any time t ∈ [T ] it holds that Ft−1(xt) − Ft−1(x∗t ) ≤
ϵt, which by the strong convexity of Ft−1(x) (see Eq. (2.1)) implies that
∥xt − x∗t ∥ ≤

√
2ϵt

σ(t−1+T0) .
Clearly for time t = 1 the claim holds since x1 = x∗1. Assume that on

time t ≥ 1 it holds that Ft−1(xt) − Ft−1(x∗t ) ≤ ϵt. By the strong convexity
of Ft−1(x) we again have that

∥xt − x∗t ∥ ≤

√
2ϵt

σ(t− 1 + T0)
. (2.31)
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Define the function f̃t(x) = ∇ft(xt) · x+ σ
2 ∥x− xt∥

2. It holds that

Ft(x
∗
t )− Ft(x∗t+1) = Ft−1(x

∗
t )− Ft−1(x∗t+1) + f̃t(x

∗
t )− f̃t(x∗t+1)

≤ f̃t(x
∗
t )− f̃t(x∗t+1) ≤ L∥x∗t − x∗t+1∥,

where the first inequality follows from the optimality of x∗t with respect to
Ft−1(x) and the second inequality follows from Lemma 16.

By the strong convexity of Ft(x) we thus have that

∥x∗t − x∗t+1∥ ≤
2L

σ(t+ T0)
. (2.32)

Combining Eq. (2.31), (2.32) via the triangle inequality we have that

∥xt − x∗t+1∥ ≤

√
2ϵt

σ(t− 1 + T0)
+

2L

σ(t+ T0)

≤

√
4ϵt

σ(t+ T0)
+

2L

σ(t+ T0)
, (2.33)

where the second inequality holds since T0 ≥ 1.

Using the induction hypothesis we have that

Ft(xt)− Ft(x∗t+1) = Ft−1(xt)− Ft−1(x∗t+1) + f̃t(xt)− f̃t(x∗t+1)

≤ ϵt +

√
4L2ϵt

σ(t+ T0)
+

2L2

σ(t+ T0)
, (2.34)

where the inequality follows from Eq. (2.33) and Lemma 16.

Setting rt to equal the RHS of Eq. (2.33), and applying Lemma 1 with
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respect to Ft(x) we have that

Ft(xt+1)− Ft(x∗t+1) ≤ (1− α)(Ft(xt)− Ft(x∗t+1)) +
σ

2
(t+ T0)α

2ρ2r2t

≤ (1− α)

(
ϵt +

√
4L2ϵt

σ(t+ T0)
+

2L2

σ(t+ T0)

)

+ σ(t+ T0)α
2ρ2
(

4ϵt
σ(t+ T0)

+
4L2

σ2(t+ T0)2

)
≤ (1− α)

(
ϵt +

√
4L2ϵt

σ(t+ T0)
+

2L2

σ(t+ T0)

)

+ 4α2ρ2
(
ϵt +

L2

σ(t+ T0)

)
≤

(
ϵt +

√
4L2ϵt

σ(t+ T0)
+

2L2

σ(t+ T0)

)(
1− α+ 4α2ρ2

)
,

where the second inequality follows from Eq. (2.34), the value of rt, and
using (a + b)2 ≤ 2a2 + 2b2 to upper bound r2t . The rest of the inequalities
follows from simple algebraic manipulations.

Setting α = 1
5ρ2

we have that

Ft(xt+1)− Ft(x∗t+1) ≤

(
ϵt +

√
4L2ϵt

σ(t+ T0)
+

2L2

σ(t+ T0)

)(
1− 1

25ρ2

)
.

Plugging in our choice ϵt = (60ρ2L)2

σ(t+T0)
we have that

Ft(xt+1)− Ft(x∗t+1) ≤
(60ρ2L)2

σ(t+ T0)

(
1 +

1

30ρ2
+

1

1800(ρ2)2

)(
1− 1

25ρ2

)
<

(60ρ2L)2

σ(t+ T0)

(
1 +

1

25ρ2

)(
1− 1

25ρ2

)
=

(60ρ2L)2

σ(t+ T0)

(
1− 1

(25ρ2)2

)
.
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Finally, setting T0 = (25ρ2)2 we have that

Ft(xt+1)− Ft(x∗t+1) ≤
(60ρ2L)2

σ(t+ T0)

(
1− 1

T0

)
<

(60ρ2L)2

σ(t+ T0)

(
1− 1

t+ 1 + T0

)
=

(60ρ2L)2

σ(t+ T0)
· t+ T0
t+ 1 + T0

=
(60ρ2L)2

σ(t+ 1 + T0)
= ϵt+1.

We are now ready to prove Theorem 9.

Proof. The proof follows the lines of the proof for Theorem 8. Define the
sequence of functions {f̃t(x)}Tt=0 in the following way:

f̃0(x) = T0
σ

2
∥x− x1∥2; f̃t(x) = ∇ft(xt) · x+

σ

2
∥x− xt∥2 ∀t ∈ {1, 2, ..., T}.

Note that for all t ∈ {0, 1, ..., T} it holds that Ft(x) =
∑t

τ=0 f̃t(x),
where Ft(x) is as defined in Algorithm 6 for the case σ > 0, and recall
that we define F0(x) := T0

σ
2∥x− x1∥

2. Recall that we define a sequence of
points {x∗t }T+1

t=1 such that for all t ∈ [T + 1], x∗t = argminx∈P Ft−1(x). Let
x∗ = argminx∈P

∑T
t=1 ft(x).

According to Lemma 15 it holds that

T∑
t=0

f̃t(x
∗
t+1)− f̃t(x∗) =

T∑
t=1

f̃t(x
∗
t+1)− f̃t(x∗)

+T0
σ

2

(
∥x∗1 − x1∥2 − ∥x∗ − x1∥2

)
≤ 0.

Using the upper bound ∥x∗ − x1∥ ≤ D and plugging the value of T0 in
Algorithm 6 we have that

T∑
t=1

f̃t(x
∗
t+1)− f̃t(x∗) ≤

T0σD
2

2
= O(σD2ρ4). (2.35)

Fix t ∈ [T ]. It holds that

Ft(x
∗
t )− Ft(x∗t+1) = Ft−1(x

∗
t )− Ft−1(x∗t+1) + f̃t(x

∗
t )− f̃t(x∗t+1)

≤ f̃t(x
∗
t )− f̃t(x∗t+1) ≤ L∥x∗t − x∗t+1∥,
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where the first inequality follows from the optimality of x∗t with respect
to Ft−1(x), and the second inequality follows from Lemma 16 and using
L = G+ σD. Since Ft(x) is σ(t+ T0)-strongly convex, this implies via Eq.
(2.1) that

∥x∗t − x∗t+1∥ ≤
2L

σ(t+ T0)
.

Applying Lemma 17 with the triangle inequality we have that

∥xt − x∗t+1∥ ≤
2L

σ(t+ T0)
+

60ρ2L

σ
√
(t+ T0)(t− 1 + T0)

= O

(
ρ2L

σt

)
,

where the equality follows since T0 ≥ 1 and by definition ρ ≥ 1.

Thus, using Lemma 16 again we have that

f̃t(xt)− f̃t(x∗t+1) = O

(
ρ2L2

σt

)
.

Plugging the above for all t ∈ [T ] into Eq. (2.35) we have that

T∑
t=1

f̃t(xt)− f̃t(x∗) = O(σD2ρ4) +

T∑
t=1

O

(
ρ2L2

σt

)
= O

(
σD2ρ4 +

ρ2L2

σ
logT

)
.

The theorem now follows from the observation that since for all t ∈ [T ],
ft(x) is σ-strongly convex it holds that

ft(xt)− ft(x∗) ≤ ∇ft(xt) · (xt − x∗)−
σ

2
∥xt − x∗∥2

= ∇ft(xt) · (xt − x∗)−
σ

2
(∥xt − x∗∥2 − ∥xt − xt∥2)

= f̃t(xt)− f̃t(x∗)
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2.6.3 Bandit algorithm

In this section we give an online algorithm for the partial information setting
(bandits). The derivation is basically straightforward using our algorithm
for the full information setting (Algorithm 6) and the technique of [30].

For this section we assume that the feasible set P (again a polytope) is
a full dimensional. We assume without loss of generality that the origin lies
in the interior of P (note that our Algorithms and the complexity measure
µ are invariant to translation) and we denote by r0 the largest scalar such
that Br0(0) ⊂ P.

We assume that the loss function ft(x) chosen by the adversary on time
t is chosen with knowledge of the history of the game but without any
knowledge of possible randomization used by the decision maker on time t
to produce his prediction. We further assume without loss of generality that
for each function ft(x) it holds that ft(0) = 0.

Note that since we assume that the gradients of each ft(x) are bounded
in magnitude by G, it holds that ft(x) is G-Lipschitz. This follows since,

∀x, y ∈ P : ft(x)− ft(y) ≤ (x− y) · ∇ft(x) ≤ G∥x− y∥. (2.36)

Also, since ft(0) = 0 and 0 ∈ P we have that

∀x ∈ P : ft(x) = ft(x)− ft(0) ≤ (x− 0) · ∇ft(x) ≤ GD. (2.37)

The algorithm is given below. The algorithm uses our full-information
algorithm - Algorithm 6 as a black box in the following way: on each round
of the game, the bandit algorithm asks Algorithm 6 for his prediction for
time t - xt, and then it generates a loss function f̃t(x) based on the received
bandit feedback, and sends it to Algorithm 6 as the loss function for time
t. In this way, the bandit algorithm “simulates” a full-information game for
Algorithm 6.
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Algorithm 7 LLOO-based Bandit Optimization
1: Input: time horizon T , upper bound on magnitude of gradients - G
2: Init Algorithm 6 with the LLOO from Section 2.4 and input parameters
T,G, σ = 0

3: Set: γ ←
√

nD
r0
T−1/4, δ ← r0γ

4: for t = 1...T do
5: Receive point xt from Algorithm 6
6: Sample a unit vector ut uniformly at random
7: Play yt = (1− γ)xt + δut
8: Receive ft(yt)
9: gt ← n

δ ft(yt)ut
10: Define the loss function f̃t(x) := gt · x
11: Feed f̃t(x) to Algorithm 6
12: end for

The regret analysis of Algorithm 7 closely follows the analysis in [30],
but instead of using Zinkevich’s algorithm [94] for the reduction from bandit
feedback to full feedback, we use our Algorithm 6.

For a proof of the following Lemma see Lemma 2.1 in [30].

Lemma 18. Fix t ∈ [T ] and define the function f̂t(x) = Ev[ft(x + δv)],
where v is a vector sampled uniformly at random from the unit ball. Let
zt = (1− γ)xt. Then, Eut [gt] = ∇f̂t(zt).

In order to derive the regret bound for Algorithm 7 we need the following
technical lemma.

Lemma 19. For all t ∈ [T ], let f̂t(x) be as in Lemma 18. It holds that

E

[
max
x∈P

T∑
t=1

(zt − x) · (∇f̂t(zt)− gt)

]
≤
√
TnGD2

δ
.

Proof. It holds that

E

[
max
x∈P

T∑
t=1

(zt − x) · (∇f̂t(zt)− gt)

]
= E

[
T∑
t=1

zt · (∇f̂t(zt)− gt)

]

+ E

[
max
x∈P

T∑
t=1

x · (gt −∇f̂t(zt))

]
.
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Note that by Lemma 18 we have that for all t ∈ [T ], E[zt · (∇f̂t(zt) −
gt) | zt] = 0, and thus,

E

[
max
x∈P

T∑
t=1

(zt − x) · (∇f̂t(zt)− gt)

]
= E

[
max
x∈P

T∑
t=1

x · (gt −∇f̂t(zt))

]
.

Using the Cauchy-Schwartz inequality and the bound maxx∈P ∥x∥ ≤ D

we have that

E

[
max
x∈P

x ·

(
T∑
t=1

gt −∇f̂t(zt)

)]
≤ E

[
D · ∥

T∑
t=1

∇f̂t(zt)− gt∥

]

= D · E

[
∥
T∑
t=1

∇f̂t(zt)− gt∥

]
.(2.38)

It now holds that

E

[
∥
T∑
t=1

∇f̂t(zt)− gt∥

]2
≤ E

[
∥
T∑
t=1

∇f̂t(zt)− gt∥2
]

= E

 T∑
t=1

∥∇f̂t(zt)− gt∥2 + 2
∑

1≤i<j≤T
(∇f̂i(zi)− gi) · (∇f̂j(zj)− gj)


=

T∑
t=1

E
[
∥∇f̂t(zt)− gt∥2

]
+ 2

∑
1≤i<j≤T

E
[
(∇f̂i(zi)− gi) · (∇f̂j(zj)− gj)

]

=

T∑
t=1

E
[
∥gt − Eut [gt]∥2

]
+ 2

∑
1≤i<j≤T

E
[
(∇f̂i(zi)− gi) · (∇f̂j(zj)− gj)

]

≤
T∑
t=1

E
[
∥gt∥2

]
+ 2

∑
1≤i<j≤T

E
[
(∇f̂i(zi)− gi) · (∇f̂j(zj)− gj)

]
, (2.39)

where the last equality follows from Lemma 18 and the last inequality follows
since for any random vector w it holds that E[∥w − E[w]∥2] ≤ E[∥w∥2].

For all j > i it holds that

E
[
(∇f̂i(zi)− gi) · (∇f̂j(zj)− gj)

]
= (2.40)

E{ut}it=1

[
(∇f̂i(zi)− gi) · E{uτ}jτ=i+1

[
(∇f̂j(zj)− gj) | {ut}it=1

]]
= 0,
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where the last equality follows since according to Lemma 18, the inner ex-
pectation is zero.

Plugging Eq. (2.40) into Eq. (2.39) for all i < j we have that

E

[
∥
T∑
t=1

∇f̂t(zt)− gt∥

]2
≤

T∑
t=1

∥gt∥2 ≤ T
(
nGD

δ

)2

, (2.41)

where we have used Eq. (2.37) in the last inequality.
Plugging Eq. (2.41) into Eq. (2.38) we finally have that

E

[
max
x∈P

x ·

(
T∑
t=1

∇f̂t(zt)− gt

)]
≤
√
TnGD2

δ
.

Theorem 10. For T ≥
(
Dn
r0

)2
it holds that the sequence of points {yt}Tt=1

produced by Algorithm 7 is feasible and satisfies

E

[
T∑
t=1

ft(yt)− min
x∗∈P

T∑
t=1

ft(x
∗)

]
= O

(
GD

√
nD

r0
T 3/4 +GDµ

√
nT

)
,

where the expectation is with respect to the randomness in choosing the
vectors {ut}Tt=1.

Proof. First, we prove the feasibility of the sequence of points {yt}Tt=1. Fix
t ∈ [T ]. By Algorithm 7 we have that yt = (1−γ)xt+δut, where xt ∈ P and
ut is a unit vector. Since by our assumption it holds that Br0(0) ⊂ P, we
have that r0ut ∈ P. Thus, for any γ ∈ [0, 1] and δ ∈ [0, γr0], it follows that
yt ∈ P. Clearly, the values of δ, γ in Algorithm 7 satisfy these requirements.

We move to prove the regret bound.
By applying Theorem 8 with respect to the loss functions {f̃t(x) = gt · x}Tt=1

we have that

T∑
t=1

xt · gt − min
x∗∈P

T∑
t=1

x∗ · gt = O
(
GDρ

√
T
)
,

where we recall that ρ =
√
nµ.
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For t ∈ [T ], denote zt = (1− γ)xt. Since (1− γ) ∈ [0, 1], it holds that

T∑
t=1

zt · gt − (1− γ) min
x∗∈P

T∑
t=1

x∗ · gt =
T∑
t=1

zt · gt − min
x∗∈(1−γ)P

T∑
t=1

x∗ · gt

= O
(
GDρ

√
T
)
. (2.42)

Ranging we have that

max
x∗∈(1−γ)P

T∑
t=1

(zt − x∗) · gt = O
(
GDρ

√
T
)
.

Plugging in Lemma 19 and taking expectation we have that

E

[
max

x∗∈(1−γ)P

T∑
t=1

(zt − x∗) · ∇f̂t(zt)

]
= O

(√
TnGD2

δ
+GDρ

√
T

)
.

Note that since ft(x) is a convex function, so is f̂t(x) and thus we have
that

E

[
T∑
t=1

f̂t(zt)− min
x∗∈(1−γ)P

T∑
t=1

f̂t(x
∗)

]
= O

(√
TnGD2

δ
+GDρ

√
T

)
. (2.43)

Fix t ∈ [T ]. Note that since ft(x) is G-Lipschitz (see Eq. (2.36)), for all
x ∈ P it holds that

|f̂t(x)− ft(x)| = |Ev∈B[ft(x+ δv)− ft(x)]|
≤ Ev∈B[|ft(x+ δv)− ft(x)|] ≤ Gδ. (2.44)

Plugging Eq. (2.44) for all t ∈ [T ] into Eq. (2.43) we have that

E

[
T∑
t=1

ft(zt)− min
x∗∈(1−γ)P

T∑
t=1

ft(x
∗)

]
= O

(
TGδ +

√
TnGD2

δ
+GDρ

√
T

)
.

Since for all t ∈ [T ], ∥yt − zt∥ ≤ δ, using the Lipschits property of ft(x)
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we have that

E

[
T∑
t=1

ft(yt)− min
x∗∈(1−γ)P

T∑
t=1

ft(x
∗)

]
= O

(
TGδ +

√
TnGD2

δ
+GDρ

√
T

)
.

Using again Eq. (2.36), (2.37) and the fact that 0 ∈ P, ft(0) = 0, we have
that for all x ∈ P and t ∈ [T ], ft((1 − γ)x) ≤ (1 − γ)ft(x) ≤ ft(x) + γGD.
Thus we have that

E[regretT ] := E

[
T∑
t=1

ft(yt)− min
x∗∈P

T∑
t=1

ft(x
∗)

]

= O

(
TγGD + TGδ +

√
TnGD2

δ
+GDρ

√
T

)
.

Now, setting δ = γr0 as in Algorithm 7, and recalling that D ≥ r0, we
have that

E[regretT ] = O

(
TγGD +

√
TnGD2

γr0
+GDρ

√
T

)
.

Finally, setting γ =
√

Dn
r0
T−1/4 we have that

E[regretT ] = O

(
GD

√
nD

r0
T 3/4 +GDρ

√
T

)
.

2.7 Lower Bound

In this section we revisit our main result from Section 2.3, that is, our lin-
early converging algorithm for smooth and strongly convex optimization over
polytopes. We show that in certain settings our convergence rate (i.e., num-
ber of calls to the linear optimization oracle to reach a certain approximation
error) is in fact nearly tight and cannot be improved beyond constants and
logarithmic terms for conditional gradient-like algorithms, i.e., algorithms
that can request a vertex of the polytope that minimizes the dot product
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with a certain linear objective and take linear combinations of these vertices.
Similar arguments appear in [52, 63].

Towards this end, consider the following optimization problem:

min
x∈Sn
{f(x) := 1

2
∥x− 1

n
1⃗∥2}, (2.45)

where Sn is the probabilistic simplex in Rn and 1⃗ is the all-ones vector in
Rn. Note that the feasible point x∗ = 1

n 1⃗ is the optimal solution to Problem
(2.45) with value f(x∗) = 0. Note also that f(x) is 1-smooth and 1-strongly
convex.

Given a conditional gradient-like algorithm, as described above, and as-
suming without losing generality that the initial iterate of the algorithm x1
is a vertex of Sn, let xt denote the last feasible iterate that the algorithm
produced by making no more than t − 1 queries to the linear optimization
oracle of Sn. Since, as we assume, each call to the linear optimization oracle
returns a vertex, i.e., a member of the standard basis in Rn, it follows that
∥xt∥0 ≤ t (here ∥·∥0 measures the number of non-zeros). It follows from a
simple calculation that

f(xt)− f(x∗) =
1

2
∥xt −

1

n
1⃗∥2 ≥ 1

2
(n− t) · 1

n2
≥ 1

4n
∀t ≤ n

2
.

It thus follows that in order for a conditional gradient-like method to
solve Problem (2.45) up to an error of at most 1

4n , it requires Ω(n) calls to
the linear optimization oracle of Sn.

We now show that for Problem (2.45) our algorithm, Algorithm 2, nearly
matches the above lower bound. To see this, note that we can write Sn in
the following way: Sn = {x ∈ Rn | − Ix ≤ 0⃗, x · 1⃗ = 1}. It thus follows that
for the simplex we have that ψ = 1,ξ = 1,D =

√
2 which implies that

µ = O(1). Plugging this into Theorem 4 we have that Algorithm 2 requires
O(n log(1/ϵ)) calls to the linear optimization oracle in order to produce an
ϵ-approximated solution to Problem (2.45) for any ϵ > 0, which matches the
above lower bound up to a logarithmic factor.

81



2.8 Open Questions

We conclude this chapter with some open questions. The lower bound pre-
sented in Section 2.7 shows that in general, the explicit dependence of our
algorithms on the dimension could not be further improved. However, the
situation is not clear for the geometric parameter µ that appears in all of our
bounds. The main question is whether the dependence on the geometrical
proprieties of the polytope could be improved, perhaps by considering some
other quantities? or, on the other side, is it possible to show a lower bound,
at list for the offline smooth and strongly convex case, that this dependence
on µ is in fact tight?

Another interesting question is whether for specific polytopes of interest,
we can exploit the specific structure, and give a tighter analysis for the local
linear oracle construction presented in Section 2.4, or give a different, more
efficient construction of such an oracle?

Finally, it is interesting whether results of the same flavour as presented
in this chapter, i.e. convergence and regret bounds, could be derived for a
conditional gradient-like method for other families of convex sets.

2.9 Proof of Lemma 15

For clarity, we first restate the lemma and then prove it.

Lemma 20. Let {ft(x)}Tt=1 be a sequence of loss functions and let {x∗t }Tt=1

be a sequence of points such that for all t ∈ [T ], x∗t ∈ argminx∈P
∑t

τ=1 fτ (x).
Then it holds that

T∑
t=1

ft(x
∗
t )−min

x∈P

T∑
t=1

ft(x) ≤ 0.

Proof. We prove by induction that for any τ ∈ [T ] it holds that

τ∑
t=1

ft(x
∗
t )−min

x∈P

τ∑
t=1

ft(x) ≤ 0.

For the base case τ = 1 the claim clearly holds since x∗1 ∈ argminx∈P f1(x).
Assume now that the claim holds for some τ ≥ 1. On time τ + 1 it holds
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that

τ+1∑
t=1

ft(x
∗
t )−min

x∈P

τ+1∑
t=1

ft(x) ≤ min
y∈P

τ∑
t=1

ft(y) + fτ+1(x
∗
τ+1)−min

x∈P

τ+1∑
t=1

ft(x)

≤
τ∑
t=1

ft(x
∗
τ+1) + fτ+1(x

∗
τ+1)−min

x∈P

τ+1∑
t=1

ft(x)

=

τ+1∑
t=1

ft(x
∗
τ+1)−min

x∈P

τ+1∑
t=1

ft(x) = 0,

where the first inequality follows from the induction hypothesis and the third
one from the optimality of x∗τ+1.

83



Chapter 3

Faster Rates for the
Conditional Gradient
Method over
Strongly-convex Sets

The conditional gradient method (CG), also known as the Frank-Wolfe algo-
rithm, originally introduced by Frank and Wolfe in the 1950’s [31], is a first
order method for the minimization of a smooth convex function over a con-
vex set. Its main advantage in large-scale problems is that it is a first-order
and projection-free method - i.e. the algorithm proceeds by iteratively solv-
ing a linear optimization problem and remaining inside the feasible domain.
For matrix completion problems, metric learning, sparse PCA, structural
SVM and other large-scale machine learning problems, this feature enabled
the derivation of algorithms that are practical on one hand and come with
provable convergence rates on the other [53, 62, 26, 42, 49, 81, 64].

Despite its empirical success, the main drawback of the method is its rel-
atively slow convergence rate in comparison to optimal first order methods.
The convergence rate of the method is on the order of 1/t where t is the
number of iterations, and this is known to be tight. In contrast, Nesterov’s
accelerated gradient descent method gives a rate of 1/t2 for general convex
smooth problems and a rate e−Θ(t) is known for smooth and strongly convex
problems. The following question arises: are there projection-free methods
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with convergence rates matching that of projected gradient-descent and its
extensions?

Motivated by this question, in this chapter we advance the line of re-
search for faster convergence rates of projection free methods. We prove
that in case both the objective function and the feasible set are strongly
convex (in fact a slightly weaker assumption than strong convexity of the
objective is required), the vanilla conditional gradient method converges at
an accelerated rate of 1/t2. The improved convergence rate is independent
of the dimension. This is also the first convergence result for the CG method
that we are aware of that achieves a rate that is between the standard 1/t

rate and a linear rate. We further show how the analysis used to prove the
latter result enables to easily derive previous fast convergence rates for the
CG method.

We motivate the study of optimization over strongly convex sets by
demonstrating that various norms that serve as popular regularizes in ma-
chine learning problems, including ℓp norms, matrix Schatten norms and
matrix group norms, give rise to strongly convex sets. We further show
that indeed linear optimization over these sets is straightforward to imple-
ment and admits a closed-form solution. Hence the CG method is appealing
for solving optimization problems with such constraints, such as regularized
linear regression.

Related work

The conditional gradient method dates back to the original work of Frank
and Wolfe [31] which presented an algorithm for minimizing a quadratic
function over a polytope using only linear optimization steps over the feasible
set. Recent results by Clarkson [18], Hazan [45] and Jaggi [52] extend the
method to smooth convex optimization over the simplex, spectrahedron and
arbitrary convex and compact sets respectively.

It was shown in numerous works that the convergence rate of the method
is on the order of 1/t and that it could not be improved in general, even if the
objective function is strongly convex for instance, as shown in [18, 45, 52],
even though it is known that in this case, the projected gradient method
achieves an exponentially fast convergence rate.

Over the past years, several results tried to improve the convergence rate
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of the conditional gradient method under various assumptions. GuéLat and
Marcotte [41] showed that in case the objective function is strongly convex
and the feasible set is a polytope, then in case the optimal solution is located
in the interior of the set, the CG method converges exponentially fast. A
similar result was presented in the work of Beck and Teboulle [10] who
considered a specific problem they refer to a the convex feasibility problem
over an arbitrary convex set. They also obtained a linear convergence rate
under the assumption that an optimal solution that is far enough from the
boundary of the set exists.

Recently, Garber and Hazan [35] gave the first natural linearly-converging
CG variant without any restricting assumptions on the location of the op-
timum. They showed that a variant of the Frank Wolfe method with the
addition of away steps converges exponentially fast in case the objective
function is strongly convex and the feasible set is a polytope. In follow-up
work, Jaggi and Lacoste-Julien [61] gave a refined analysis of an algorithm
presented in [41] which also uses away steps and showed that it also con-
verges exponentially fast in the same setting as the Garber-Hazan result.
Also relevant in this context is the work of Ahipasaoglu, Sun and Todd [2]
who showed that in the specific case of minimizing a smooth and strongly
convex function over the unit simplex, a variant of the conditional gradient
method that also uses away steps converges with a linear rate.

In a different line of work, Migdalas and recently Lan [68, 63] considered
the conditional gradient algorithm with a stronger optimization oracle that
is able to solve quadratic problems over the feasible domain. They show
that in case the objective function is strongly convex then exponentially
fast convergence is attainable. However, in most settings of interest, an
implementation of such a non-linear oracle is computationally much more
expensive than the linear oracle, and the key benefit of the conditional gra-
dient method is lost.

In the specific case that the feasible set is strongly convex, an assump-
tion also made in this chapter, Levitin and Polyak showed in their classical
work [65] that under the restrictive assumption that the norm of the gradi-
ent of the objective function is lower bounded by a constant everywhere in
the feasible set, the CG method converges with an exponential rate. The
same result appeared in following works by Demyanov and Rubinov [23] and
Dunn [28], both also requiring that the magnitude of the gradients is lower
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Ref. Set K Function f Location of x∗ Conv. rate
[52] convex convex unrestricted t−1

[41] polytope strongly convex interior e−Θ(t)

[10] convex f(x) = ∥Ax− b∥22 interior e−Θ(t)

[65]
[23] s.convex ∥∇f(x)∥ ≥ c > 0 unrestricted e−Θ(t)

[28]
Thm. 12 s.convex strongly convex unrestricted t−2

Table 3.1: Comparison of convergence rates for the conditional gradient
method under different assumptions. We denote the optimal solution by x∗.
Note that since all results assume smoothness of the function we omit it
from column 3.

bounded by a constant everywhere in the feasible set. As we later show,
the lower bound requirement on the gradients is in a sense much stronger
than requiring that the objective function is strongly convex. Under our
assumption however, which is slightly weaker than strong convexity of the
objective, the gradient may become arbitrarily small on the feasible set.

We summarize previous convergence rate results for the standard CG
method in Table 3.

3.1 Preliminaries

3.1.1 Smoothness and strong convexity

For the following definitions let E be a finite vector space and ∥ · ∥, ∥ · ∥∗ be
a pair of dual norms over E.

Definition 7 (smooth function). We say that a function f : E → R is β
smooth over a convex set K ⊂ E with respect to ∥ · ∥ if for all x, y ∈ K it
holds that

f(y) ≤ f(x) +∇f(x) · (y − x) + β

2
∥x− y∥2.

Definition 8 (strongly convex function). We say that a function f : E→ R
is α-strongly convex over a convex set K ⊂ E with respect to ∥·∥ if it satisfies
the following two equivalent conditions
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1. ∀x, y ∈ K :

f(y) ≥ f(x) +∇f(x) · (y − x) + α

2
∥x− y∥2.

2. ∀x, y ∈ K, γ ∈ [0, 1] :

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y)− α

2
γ(1− γ)∥x− y∥2.

The above definition (part 1) combined with first order optimality condi-
tions imply that for a α-strongly convex function f , if x∗ = argminx∈K f(x),
then for any x ∈ K

f(x)− f(x∗) ≥ α

2
∥x− x∗∥2. (3.1)

Eq. (3.1) further implies that the magnitude of the gradient of f at point
x, ∥∇f(x)∥∗ is at least of the order of the square-root of the approximation
error at x, f(x)− f(x∗). This follows since√

2

α
(f(x)− f(x∗)) · ∥∇f(x)∥∗ ≥ ∥x− x∗∥ · ∥∇f(x)∥∗

≥ (x− x∗) · ∇f(x)
≥ f(x)− f(x∗),

where the first inequality follows from (3.1), the second from Holder’s in-
equality and the third from convexity of f . Thus we have that at any point
x ∈ K it holds that

∥∇f(x)∥∗ ≥
√
α

2
·
√
f(x)− f(x∗). (3.2)

We will show that this property, that is in fact weaker than strong convexity,
combined with an additional property of the convex set that we define next,
allows to obtain the faster rates 1.

1In this work we assume that the convex set K is full-dimensional. In case this assump-
tion does not hold, e.g. if the convex set is the unit simplex, then Eq. (3.2) holds even
if we replace ∇f(x) with PS(K)[∇f(x)] where PS(K) denotes the projection operator onto
the smallest subspace that contains K.
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Definition 9 (strongly convex set). We say that a convex set K ⊂ E is
α-strongly convex with respect to ∥ · ∥ if for any x, y ∈ K, any γ ∈ [0, 1] and
any vector z ∈ E such that ∥z∥ = 1, it holds that

γx+ (1− γ)y + γ(1− γ)α
2
∥x− y∥2z ∈ K.

That is, K contains a ball of of radius γ(1 − γ)α2 ∥x− y∥
2 induced by the

norm ∥ · ∥ centered at γx+ (1− γ)y.

3.1.2 The conditional gradient algorithm

The conditional gradient algorithm, also known as the Frank-Wolfe algo-
rithm, is an algorithm for the minimization of a convex function f : E→ R
which is assumed to be βf -smooth with respect to a norm ∥·∥, over a convex
and compact set K ⊂ E. The algorithm implicitly assumes that the convex
set K is given in terms of a linear optimization oracle OK : E → K which
given a linear objective c ∈ E returns a point x = OK(c) ∈ K such that
x ∈ argminy∈K y · c. The algorithm is given below. The algorithm proceeds
in iterations, taking on each iteration t the new iterate xt+1 to be a convex
combination between the previous feasible iterate xt and a feasible point
that minimizes the dot product with the gradient direction at xt, which is
generated by invoking the oracle OK with the input vector ∇f(xt). There
are various ways to set the parameter that controls the convex combination
ηt in order to guarantee convergence of the method. The option that we
choose here is the optimization of ηt via a simple line search rule, which is
straightforward and computationally cheap to implement.

Algorithm 8 Conditional Gradient Algorithm with Line Search
1: Let x0 be an arbitrary point in K
2: for t = 0, 1, ... do
3: pt ← OK(∇f(xt))
4: ηt ← argminη∈[0,1] η(pt − xt) · ∇f(xt) + η2

βf
2 ∥pt − xt∥

2

5: xt+1 ← xt + ηt(pt − xt)
6: end for

The following theorem states the well-known convergence rate of the
conditional gradient algorithm for smooth convex minimization over a com-
pact and convex set, without any further assumptions. A proof is given in
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Section 3.5 for completeness though similar proofs could also be found in
[65, 52].

Theorem 11. Let x∗ ∈ argminx∈K f(x) and denote DK = maxx,y∈K ∥x− y∥
(the diameter of the set with respect to ∥ · ∥). For every t ≥ 1 the iterate xt
of Algorithm 8 satisfies

f(xt)− f(x∗) ≤
8βfD

2
K

t
= O

(
1

t

)
.

3.1.3 Results in this chapter

In this work, we consider the case in which the function to optimize f is
not only βf -smooth with respect to ∥ · ∥ but also αf -strongly convex with
respect to ∥ · ∥ (we relax this assumption a bit in subsection 3.3.3). We
further assume that the feasible set K is αK-strongly convex with respect to
∥ · ∥. Under these two additional assumptions alone we prove the following
theorem.

Theorem 12. Let x∗ = argminx∈K f(x) and let M =
√
αfαK

8
√
2βf

. Denote
DK = maxx,y∈K ∥x− y∥. For every t ≥ 1 the iterate xt of Algorithm 8
satisfies

f(xt)− f(x∗) ≤
max{92βfD2

K, 18M
−2}

(t+ 2)2
= O

(
1

t2

)
.

3.2 Proof of Theorem 12

We denote the approximation error of the iterate xt produced by the algo-
rithm by ht. That is ht = f(xt)− f(x∗) where x∗ = argminx∈K f(x).

To better illustrate our results, we first shortly revisit the proof technique
of Theorem 11. The main observation to be made is the following:

ht+1 = f(xt + ηt(pt − xt))− f(x∗)

≤ ht + ηt(pt − xt) · ∇f(xt) +
η2t βf
2
∥pt − xt∥2

≤ ht + ηt(x
∗ − xt) · ∇f(xt) +

η2t βf
2
∥pt − xt∥2

≤ (1− ηt)ht +
η2t βf
2
∥pt − xt∥2, (3.3)
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Figure 3.1: For strongly convex sets, as in the left picture, the duality gap
(denoted dg) increases with ∥pt − xt∥2, which accelerates the convergence of
the conditional gradient method. As shown in the picture on the right, this
property clearly does not hold for arbitrary convex sets.

where the the first inequality follows from the smoothness of f , the sec-
ond from the optimality of pt and the third from convexity of f . Choosing
ηt to be roughly 1/t yields the convergence rate of 1/t stated in Theorem 11.
This rate cannot be improved in general since while the so-called duality gap
(xt − pt) · ∇f(xt) could be arbitrarily small (as small as (xt − x∗) · ∇f(xt)),
the quantity ∥pt − xt∥ may remain as large as the diameter of the set. Note
that in case f is strongly-convex, then according to Eq. (3.1) it holds that xt
converges to x∗ and thus according to Eq. (3.3) it suffices to solve the inner
linear optimization problem in Algorithm 8 on the intersection of K and a
small ball centered at xt. As a result the quantity ∥pt − xt∥2 will be propor-
tional to the approximation error at time t, and a linear convergence rate
will be attained. However in general, under the linear oracle assumption, we
have no way to solve the linear optimization problem over the intersection
of K and a ball without greatly increasing the number of calls to the linear
oracle, which is the most expensive step in many settings.

In case the feasible set K is strongly convex, then the main observation
to be made is that while the quantity ∥pt − xt∥ may still be much larger
than ∥x∗ − xt∥ (the distance to the optimum), in this case, the duality gap
must also be large, which results in faster convergence. This observation is
illustrated in Figure 3.1 and given formally in Lemma 21.
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Lemma 21. On any iteration t of Algorithm 8 it holds that

ht+1 ≤ ht ·max{1
2
, 1− αK∥∇f(xt)∥∗

8βf
}.

Proof. By the optimality of the point pt we have that

(pt − xt) · ∇f(xt) ≤ (x∗ − xt) · ∇f(xt) ≤ f(x∗)− f(xt) = −ht, (3.4)

where the second inequality follows from convexity of f . Denote ct = 1
2(xt+

pt) and wt ∈ argminw∈E,∥w∥≤1w·∇f(xt). Note that from Holder’s inequality
we have that wt · ∇f(xt) = −∥∇f(xt)∥∗. Using the strong convexity of the
set K we have that the point p̃t = ct +

αK
8 ∥xt − pt∥

2wt is in K. Again using
the optimality of pt we have that

(pt − xt) · ∇f(xt) ≤ (p̃t − xt) · ∇f(xt)

=
1

2
(pt − xt) · ∇f(xt) +

αK∥xt − pt∥2

8
wt · ∇f(xt)

≤ −1

2
ht −

αK∥xt − pt∥2

8
∥∇f(xt)∥∗, (3.5)

where the last inequality follows from Eq. (3.4).
We now analyze the decrease in the approximation error ht+1. By

smoothness of f we have

f(xt+1) ≤ f(xt) + ηt(pt − xt) · ∇f(xt) +
βf
2
η2t ∥pt − xt∥2.

Subtracting f(x∗) from both sides we have

ht+1 ≤ ht + ηt(pt − xt) · ∇f(xt) +
βf
2
η2t ∥pt − xt∥2. (3.6)

Plugging Eq. (3.5) we have

ht+1 ≤ ht

(
1− ηt

2

)
− ηt

αK∥xt − pt∥2

8
∥∇f(xt)∥∗ +

βf
2
η2t ∥pt − xt∥2

= ht

(
1− ηt

2

)
+
∥xt − pt∥2

2

(
η2t βf − ηt

αK∥∇f(xt)∥∗
4

)
.
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In case αK∥∇f(xt)∥∗
4 ≥ βf , by the optimal choice of ηt in Algorithm 8, we can

set ηt = 1 and get

ht+1 ≤
ht
2
.

Otherwise, we can set ηt = αK∥∇f(xt)∥∗
4βf

and get

ht+1 ≤ ht

(
1− αK∥∇f(xt)∥∗

8βf

)
.

Note that Lemma 21 only relies on the strong convexity of the set K and
did not assume anything regrading f beyond convexity and smoothness. In
particular it does not require f to be strongly convex.

We can now prove Theorem 12.

Proof. Let M =
√
αfαK

8
√
2βf

and C = max{92βfD2
K, 18M

−2}. We prove by
induction that for all t ≥ 1, ht ≤ C

(t+2)2
.

Since we assume that the objective function f satisfies Eq. (3.2), we
have from Lemma 21 that on any iteration t,

ht+1 ≤ ht ·max{1
2
, 1−

αK
√
αf

8
√
2βf

√
ht}

= ht ·max{1
2
, 1−Mh

1/2
t }. (3.7)

For the base case t = 1 we need to prove that h1 = f(x1) − f(x∗) ≤ C/4.
By βf smoothness of f we have

f(x1)− f(x∗) = f(x0 + η0(p0 − x0))− f(x∗)

≤ h0 + η0(p0 − x0) · ∇f(x0) +
βfη

2
0

2
D2
K

≤ h0(1− η0) +
βfη

2
0

2
D2
K,

where the last inequality follows from convexity of f . By the optimal choice
of η0 we can in particular set η0 = 1 which gives h1 ≤ βf

2 D
2
K ≤ C/9.

Assume now that the induction holds for time t ≥ 1, that is ht ≤ C
(t+2)2

.
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If the result of the max operation in Eq. (3.7) is the first argument, that
is 1/2, we have that

ht+1 ≤ ht
2
≤ C

2(t+ 2)2
=

C

(t+ 3)2
· (t+ 3)2

2(t+ 2)2
≤ C

(t+ 3)2
, (3.8)

where the last inequality holds for any t ≥ 1.
We now turn to the case in which the result of the max operation in Eq.

(3.7) is the second argument. We consider two cases.
If ht ≤ C

2(t+2)2
then as in Eq. (3.8) it holds for any t ≥ 1 that

ht+1 ≤ ht ≤
C

2(t+ 2)2
≤ C

(t+ 3)2
,

where the first inequality follows from Eq. (3.7).
Otherwise, ht > C

2(t+2)2
. By Eq. (3.7) and the induction assumption we

have

ht+1 ≤ ht
(
1−Mh

1/2
t

)
<

C

(t+ 2)2

(
1−M

√
C

2

1

t+ 2

)

=
C

(t+ 3)2
· (t+ 3)2

(t+ 2)2

(
1−M

√
C

2

1

t+ 2

)

=
C

(t+ 3)2
· (t+ 2)2 + 2t+ 5

(t+ 2)2

(
1−M

√
C

2

1

t+ 2

)

<
C

(t+ 3)2

(
1 +

3(t+ 2)

(t+ 2)2

)(
1−M

√
C

2

1

t+ 2

)

=
C

(t+ 3)2

(
1 +

3

t+ 2

)(
1−M

√
C

2

1

t+ 2

)
.

Thus for C ≥ 18
M2 we have that

ht+1 ≤
C

(t+ 3)2

(
1 +

3

t+ 2

)(
1− 3

t+ 2

)
<

C

(t+ 3)2
.
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3.3 Derivation of Previous Fast Rates Results and
Extensions

3.3.1 Deriving the linear rate of Polayk & Levitin

Polyak & Levitin considered in [65] the case in which the feasible set is
strongly convex, the objective function is smooth and there exists a constant
g > 0 such that

∀x ∈ K : ∥∇f(x)∥∗ ≥ g. (3.9)

They showed that under the lower-bounded gradient assumption, Algorithm
8 converges with a linear rate, that is e−Θ(t). Clearly by plugging Eq. (3.9)
into Lemma 21 we have that on each iteration t

ht+1 ≤ ht ·max{1
2
, 1− αkg

8βf
}.

which results in the same exponentially fast convergence rate as in [65] and
following works such as [23, 28].

3.3.2 Deriving a linear rate for arbitrary convex sets in case
the optimum is in the interior

Assume now that the feasible set K is convex but not necessarily strongly
convex. We assume that the objective function f is smooth, convex, satisfies
Eq. (3.2) with some constant αf and admits a minimizer (not necessarily
unique) x∗ that lies in the interior of K, i.e. there exists a parameter r > 0

such that the ball of radius r with respect to norm ∥·∥ centered at x∗ is fully
contained in K 2. GuéLat and Marcotte [41] showed the under the above
conditions, the conditional gradient algorithm converges with a linear rate.
We now show how a slight modification in the proof of Lemma 21 yields this
linear convergence result.

Let wt be as in the proof of Lemma 21, that is wt ∈ argminw∈E,∥w∥≤1w ·
∇f(xt). Instead of defining the point p̃t as in the proof of Lemma 21 we

2We assume here that K is full-dimensional. In any other case, we can assume instead
that the intersection of the ball centered at x∗ with the smallest subspace containing K
is fully contained in K. In this case we also need to replace the gradient ∇f(x) with its
projection onto this subspace, see also footnote 1.
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define it to be p̃t = x∗ + rwt. Because of our assumption on the location of
x∗, it holds that p̃t ∈ K. We thus have that

(p̃t − xt) · ∇f(xt) = (x∗t − xt) · ∇f(xt) + rwt · ∇f(xt) ≤ −r∥∇f(xt)∥∗.

Plugging this into Eq. (3.6) we have

ht+1 ≤ ht − ηtr∥∇f(xt)∥∗ +
βfη

2
tD

2
K

2

≤ ht − ηtr
√
αf
2

√
ht +

βfη
2
tD

2
K

2
.

where DK denotes the diameter of K with respect to norm ∥ · ∥ and the
second inequality follows from Eq. (3.2). By the optimal choice of ηt, we
can set ηt =

r
√
αf
√
ht√

2βfD
2
K

and get

ht+1 ≤ ht −
r2αf
4βfD

2
K
ht,

which results in a linear convergence result.

3.3.3 Relaxing the strong convexity of the objective function

So far we have considered the case in which the objective function f is
strongly convex. Notice however that our main instrument for proving the
accelerated convergence rate, i.e. Lemma 21, did not rely directly on strong
convexity of f , but on the magnitude of the gradient, ∥∇f(xt)∥∗. We have
seen in Eq. (3.2) that indeed if f is strongly convex than the gradient is at
least of the order of

√
ht. We now show that there exists functions which are

not strongly convex but still satisfy Eq. (3.2) and hence our results apply
also for them.

Consider a function f of the following form:

f(x) = g(Ax),

where x ∈ Rn, A ∈ Rm×n and g : Rm → R is βg-smooth and αg-strongly
convex over Rm with respect to the ℓ2 norm. Assume further thatm < n and
all rows of A are linearly independent. Note that since A maps x to a low-
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dimensional subspace, the function f(x) is not strongly convex. However,
f(x) is smooth. To see this, note that the gradient vector of f(x) is given
by ∇f(x) = A⊤g(Ax), and thus, for any x, y ∈ Rn it holds that

∥∇f(x)−∇f(y)∥22 = ∥A⊤(∇g(Ax)−∇g(Ay))∥22
≤ λmax(AA

⊤) · ∥∇g(Ax)−∇g(Ay)∥22
≤ λmax(AA

⊤)β2g · ∥Ax−Ay∥22
≤ λmax(AA

⊤)λmax(A
⊤A)β2g · ∥x− y∥22,

where the second inequality follows from the smoothness of g, and the nota-
tion λmax(M) is used to denote the largest eigenvalue of a matrix M . Thus
we have that f(x) has a

√
λmax(AA⊤)λmax(A⊤A)βg-Lipshitz gradient and

thus it is smooth. Moreover, we now show that f(x) indeed satisfies the
condition in Eq. (3.2):

∥∇f(x)∥22 = ∥A⊤∇g(Ax)∥22 ≥ λmin(AA
⊤) · ∥∇g(Ax)∥22

≥ λmin(AA
⊤) · αg

2
(g(Ax)− g(Ax∗))

=
λmin(AA⊤)αg

2
(f(x)− f(x∗)) ,

where the inequality follows from applying Eq. (3.2) with respect to the
function g, and λmin(AA⊤) is used to denote the smallest eigenvalue of the
matrix AA⊤. Note that by our assumption on the matrix A, it indeed follows
that λmin(AA⊤) > 0.

For instance, a case of interest that fits the above assumptions is when
f(x) = 1

2∥Ax− b∥
2
2, where A is a matrix as discussed above. In this case the

optimization problem minx∈K f(x) is the problem of finding a point in K
that best satisfies an under-determined linear system in terms of the mean
square error. An application of the conditional gradient method to this
problem was studied in [10]. Combining the result of this subsection for this
choice of f(x) with the result of the previous subsection yields the linear
convergence rate of the conditional gradient method applied to the convex
feasibility problem studied in [10].
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E Domain S.C. parameter Lin. opt. comp.
Rn ℓp ball, p ∈ (1, 2] p−1

r O(nnz)
Rm×n Schatten ℓp ball, p ∈ (1, 2] p−1

r O(n3) (SVD)
Rm×n Group ℓs,p ball, s, p ∈ (1, 2] (s−1)(p−1)

(s+p−2)r O(nnz)

Table 3.2: Examples of strongly convex sets with corresponding strong con-
vexity parameter and complexity of a linear optimization oracle implemen-
tation . nnz denotes the number of non-zero entries in the linear objective
and σ(X) denotes the vector of singular values.

3.4 Examples of Strongly Convex Sets

In this section we explore convex sets for which Theorem 12 is applicable.
That is, convex sets which on one hand are strongly convex, and on the
other, admit a simple and efficient implementation of a linear optimization
oracle. We show that various norms that give rise to natural regularization
functions in machine learning, induce convex sets that fit both of the above
requirements. A summary of our findings is given in Table 3.4. We note
that in all cases in which the norm parameter p is smaller than 2 (or one of
the parameters s, p in case of group norms), we are not aware of a practical
algorithm for computing the projection.

3.4.1 Partial characterization of strongly convex sets

The following lemma is taken from [54] (Theorem 12).

Lemma 22. Let E be a finite vector space and let f : E → R be non-
negative, α-strongly convex and β-smooth. Then the set K = {x | f(x) ≤ r}
is α√

2βr
-strongly convex.

This lemma for instance shows that the Euclidean ball of radius r is
1/r-strongly convex (by applying the lemma with f = ∥x∥22).

The following lemma will be useful to prove that convex sets that are
induced by certain norms, which do not correspond to a smooth function as
in the previous lemma, are strongly convex. The proof is given in Section
3.6.
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Lemma 23. Let E be a finite vector space, let ∥·∥ be a norm over E and as-
sume that the function f(x) = ∥x∥2 is α-strongly convex over E with respect
to the norm ∥·∥. Then for any r > 0, the set B∥·∥(r) = {x ∈ E | ∥x∥ ≤ r} is
α
2r -strongly convex with respect to ∥ · ∥.

3.4.2 ℓp balls for p ∈ (1, 2]

Given a parameter p ≥ 1, consider the ℓp ball of radius r,

Bp(r) = {x ∈ Rn | ∥x∥p ≤ r}.

The following lemma is proved in [84].

Lemma 24. Fix p ∈ (1, 2]. The function 1
2∥x∥

2
p is (p − 1)-strongly convex

w.r.t. the norm ∥·∥p.

The following corollary is a consequence of combining Lemma 24 and
Lemma 23. The proof is given in Section 3.6.

Corollary 3. Fix p ∈ (1, 2]. The set Bp(r) is p−1
r -strongly convex with

respect to the norm ∥ · ∥p and (p−1)n
1
2− 1

p

r -strongly convex with respect to the
norm ∥ · ∥2.

The following lemma establishes that linear optimization over Bp(r) ad-
mits a simple closed-form solution that can be computed in time that is
linear in the number of non-zeros in the linear objective. The proof is given
in Section 3.6.

Lemma 25. Fix p ∈ (1, 2], r > 0 and a linear objective c ∈ Rn. Let x ∈ Rn

such that xi = − r

∥c∥q−1
q

sgn(ci)|ci|q−1 where q satisfies: 1/q + 1/p = 1, and
sgn(·) is the sign function. Then x = argminy∈Bp(r) y · c

3.4.3 Schatten ℓp balls for p ∈ (1, 2]

Given a matrix X ∈ Rm×n we denote by σ(X) the vector of singular values
of X in descending order, that is σ(X)1 ≥ σ(X)2 ≥ ...σ(X)min(m,n). The
Schatten ℓp norm is given by

∥X∥S(p) = ∥σ(X)∥p =

min(m,n)∑
i=1

σ(X)pi

1/p

.
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Consider the Schatten ℓp ball of radius r,

BS(p)(r) = {X ∈ Rm×n | ∥X∥S(p) ≤ r}.

The following lemma is taken from [55].

Lemma 26. Fix p ∈ (1, 2]. The function 1
2∥X∥

2
S(p) is (p−1)-strongly convex

w.r.t. the norm ∥·∥S(p).

The proof of the following corollary follows the exact same lines as the
proof of Corollary 3 by using Lemma 26 instead of Lemma 24.

Corollary 4. Fix p ∈ (1, 2]. The set BS(p)(r) is p−1
r -strongly convex with

respect to the norm ∥·∥S(p) and (p−1)min(m,n)
1
2− 1

p

r -strongly convex with respect
to the frobenius norm ∥ · ∥F .

The following lemma establishes that linear optimization over BS(p)(r)
admits a simple closed-form solution given the singular value decomposition
of the linear objective. The proof is given in Section 3.6.

Lemma 27. Fix p ∈ (1, 2], r > 0 and a linear objective C ∈ Rm×n. Let
C = UΣV ⊤ be the singular value decomposition of C. Let σ be a vector
such that σi = − r

∥σ(C)∥q−1
q

σ(C)q−1i where q satisfies: 1/q+1/p = 1. Finally,
let X = UDiag(σ)V ⊤ where Diag(σ) is an m× n diagonal matrix with the
vector σ as the main diagonal. Then X = argminY ∈BS(p)(r) Y • C, where •
denotes the standard inner product for matrices.

3.4.4 Group ℓs,p balls for s, p ∈ (1, 2]

Given a matrix X ∈ Rm×n denote by Xi ∈ Rn the ith row of X. That is
X = (X1, X2, ..., Xm)

⊤.
The ℓs,p norm of X is given by,

∥X∥s,p = ∥(∥X1∥s, ∥X2∥s, ..., ∥Xm∥s)∥p.

We define the ℓs,p ball as follows:

Bs,p(r) = {X ∈ Rm×n | ∥X∥s,p ≤ r}.

The proof of the following lemma is given in Section 3.6.
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Lemma 28. Let s, p ∈ (1, 2]. The set Bs,p(r) is (s−1)(p−1)
(s+p−2)r -strongly convex

with respect to the norm ∥ · ∥s,p and n
1
s
− 1

2m
1
p
− 1

2
(s−1)(p−1)
(s+p−2)r -strongly convex

with respect to the frobenius norm ∥ · ∥F .

The following lemma establishes that linear optimization over Bs,p(r)
admits a simple closed-form solution that can be computed in time that is
linear in the number of non-zeros in the linear objective. The proof is given
in Section 3.6.

Lemma 29. Fix s, p ∈ (1, 2], r > 0 and a linear objective C ∈ Rm×n.
Let X ∈ Rm×n be such that Xi,j = − r

∥C∥q−1
z,q ∥Ci∥z−qz

sgn(Ci,j)|Ci,j |z−1 where z
satisfies: 1/s + 1/z = 1, q satisfies: 1/p + 1/q = 1 and Ci denotes the ith
row of C. Then X = argminY ∈Bs,p(r) Y • C, where • denotes the standard
inner product for matrices.

3.5 Proof of Theorem 11

Proof. Fix an iteration t. By the βf -smoothness of f we have that

ht+1 = f(xt + ηt(pt − xt))− f(x∗)

≤ f(xt)− f(x∗) + ηt(pt − xt) · ∇f(xt) +
η2t βf
2
∥pt − xt∥2

≤ ht − ηtht +
η2t βfD

2
K

2
, (3.10)

where the last inequality follows from convexity of f . Notice that by the
optimal choice of ηt in Algorithm 8, it holds in particular that ht+1 ≤ ht (by
setting ηt = 0 in Eq. (3.10)).

Fix C = 8βfD
2
K. We now prove by induction on t that ht ≤ C

t .
For the base case t = 1 we notice that by the optimal choice of η0 in

Algorithm 8 we can in particular set η0 = 1 and thus it follows from Eq.
(3.10) that h1 ≤ βfD

2
K

2 < C as needed.
Assume now that the induction holds for t ≥ 1. That is ht ≤ C

t . We
consider two cases.

If ht ≤ C
2t then we have

ht+1 ≤ ht ≤
C

2t
=

C

t+ 1
· t+ 1

2t
≤ C

t+ 1
,
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where the last inequality holds for any t ≥ 1.
Otherwise it holds that ht > C

2t . Using Eq. (3.10) again we have

ht+1 ≤ ht − ηtht +
η2t βfD

2
K

2
.

By the optimal choice of ηt in Algorithm 8 we can set ηt = ht
βfD

2
K

and get

ht+1 ≤ ht −
1

2βfD
2
K
h2t <

C

t
− C2

8βfD
2
Kt

2

=
C

t+ 1

(
t+ 1

t
− C(t+ 1)

8βfD
2
Kt

2

)
<

C

t+ 1

(
1 +

1

t
− Ct

8βfD
2
Kt

2

)
.

Thus for C ≥ 8βfD
2
K we have that ht+1 ≤ C

t+1 .

3.6 Proofs of Lemmas and Corollaries from Sec-
tion 3.4

Proof of Lemma 23

Proof. It suffices to show that given x, y ∈ E such that f(x) ≤ r2, f(y) ≤ r2,
a scalar γ ∈ [0, 1] and z ∈ E such that ∥z∥ ≤ α

4rγ(1 − γ)∥x− y∥
2, it holds

that, f(γx+ (1− γ)y + z) ≤ r2.
By the definition of f and the triangle inequality for ∥ · ∥ we have

f(γx+ (1− γ)y + z) = ∥γx+ (1− γ)y + z∥2

≤ (∥γx+ (1− γ)y∥+ ∥z∥)2

=
(√

f(γx+ (1− γ)y) + ∥z∥
)2
. (3.11)

Since f is α strongly convex with respect to ∥ · ∥ we have that

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y)− α

2
γ(1− γ)∥x− y∥2

≤ r2 − α

2
γ(1− γ)∥x− y∥2.
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The function g(t) =
√
t is concave, meaning

√
a− b = g(a− b) ≤ g(a)−

g′(a) · b =
√
a− b

2
√
a
. Thus,

√
f(γx+ (1− γ)y) ≤

√
r2 − α

2
γ(1− γ)∥x− y∥2

≤ r − αγ(1− γ)∥x− y∥2

4r
.

Plugging back in Eq. (3.11) we have

f(γx+ (1− γ)y + z) ≤
(
r − αγ(1− γ)∥x− y∥2

4r
+ ∥z∥

)2

.

By our assumption on ∥z∥ we have

f(γx+ (1− γ)y + z) ≤
(
r − αγ(1− γ)∥x− y∥2

4r
+
α

4r
γ(1− γ)∥x− y∥2

)2
= r2.

Proof of Corollary 3

Proof. The strong convexity of the set w.r.t. ∥ · ∥p is an immediate conse-
quence of Lemma 23.

Since Bp(r) is α = (p − 1)/r strongly convex w.r.t. the norm ∥ · ∥p, we
have that given x, y ∈ Bp(r), γ ∈ [0, 1] and z ∈ Rn such that ∥z∥p ≤ 1 it
holds that

γx+ (1− γ)y + α

2
γ(1− γ)∥x− y∥2pz ∈ Bp(r).

For any p ∈ (1, 2] and vector v ∈ Rn it holds that

∥v∥2 ≤ ∥v∥p ≤ n
1
p
− 1

2 ∥v∥2. (3.12)

Given a vector z′ ∈ Rn such that ∥z′∥F ≤ 1 we have that

∥α
2
γ(1− γ)∥x− y∥22z′∥p =

α

2
γ(1− γ)∥x− y∥22∥z′∥p.
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Using Eq. (3.12) we have

∥α
2
γ(1− γ)∥x− y∥22z′∥p ≤

α

2
γ(1− γ)∥x− y∥2pn

1
p
− 1

2 ∥z′∥2

≤ αn
1
p
− 1

2

2
γ(1− γ)∥x− y∥2p.

Hence, Bp(r) is αn
1
2
− 1
p = (p−1)n

1
2− 1

p

r -strongly convex with respect to
∥ · ∥2.

Proof of Lemma 25

Proof. Since ∥·∥p and ∥·∥q are dual norms, we have using Holder’s inequality
that for all x ∈ Bp(r),

x · c ≥ −∥x∥p∥c∥q ≥ −r∥c∥q.

Thus choosing xi = − r

∥c∥q−1
q

sgn(ci)|ci|q−1 we have that

x · c = −
n∑
i=1

r

∥c∥q−1q

sgn(ci)|ci|q−1 · ci

= −
n∑
i=1

r

∥c∥q−1q

|ci|q = −
r

∥c∥q−1q

∥c∥qq

= −r∥c∥q.

Moreover,

∥x∥pp =
rp(

∥c∥q−1q

)p n∑
i=1

(
|ci|q−1

)p
.

Since p = q/(q − 1) we have that

∥x∥pp =
rp

∥c∥qq

n∑
i=1

|ci|q = rp.

Thus we have that x ∈ Bp(r).
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Proof of Lemma 27

Proof. Since ∥·∥S(p) and ∥·∥S(q) are dual norms we have from Holder’s in-
equality that for all X ∈ BS(p)(r),

X • C ≥ −∥X∥S(p)∥C∥S(q) ≥ −r∥C∥S(q) = r∥σ(C)∥q.

By our choice of X we have that

X • C = Tr(X⊤C) = Tr(V Diag(σ)⊤U⊤UΣV ⊤)

= Tr(V Diag(σ)⊤ΣV ⊤)
= Tr(V ⊤V Diag(σ)⊤Σ) = Tr(Diag(σ)⊤Σ)

=

min(m,n)∑
i=1

− r

∥σ(C)∥q−1q

σ(C)q−1i · σ(C)i

= − r

∥σ(C)∥q−1q

min(m,n)∑
i=1

σ(C)qi

= −r∥σ(C)∥q.

Moreover,

∥X∥pS(p) = ∥σ(X)∥pp =
rp(

∥σ(C)∥q−1q

)p n∑
i=1

(
σ(C)q−1i

)p
.

Since p = q/(q − 1) we have that

∥X∥pS(p) =
rp

∥σ(C)∥qq

n∑
i=1

|σ(C)i|q = rp.

Thus we have that X ∈ BS(p)(r).

Proof of Lemma 28

The following lemma will be of use in the proof.
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Lemma 30. for any matrix A ∈ Rm×n and s, p ∈ (1, 2] it holds that

∥A∥F ≤ ∥A∥s,p ≤ n
1
s
− 1

2m
1
p
− 1

2 ∥A∥F .

Proof. For any vector v ∈ Rn and p ∈ (1, 2] it holds that

∥v∥2 ≤ ∥v∥p ≤ n
1
p
− 1

2 ∥v∥2. (3.13)

Denote by Ai the ith row of A. For any i ∈ [m] and p ∈ (1, 2] it holds that

∥Ai∥2 ≤ ∥Ai∥p ≤ n
1
p
− 1

2 ∥Ai∥2. (3.14)

Note that by definition ∥ · ∥F ≡ ∥ · ∥2,2. Applying Eq. (3.13) and (3.14)
we have,

∥A∥F = ∥A∥2,2 = ∥(∥A1∥2, ∥A2∥2, ..., ∥Am∥2)∥2
≤ ∥(∥A1∥s, ∥A2∥s, ..., ∥Am∥s)∥p
≤ n

1
s
− 1

2m
1
p
− 1

2 ∥(∥A1∥2, ∥A2∥2, ..., ∥Am∥2)∥2
= n

1
s
− 1

2m
1
p
− 1

2 ∥A∥F .

We can now prove Lemma 28.

Proof. Let z, q be such that 1/z + 1/s = 1 and 1/q + 1/p = 1. Note that
z, q ∈ [2,∞). The norm ∥ · ∥z,q is the dual norm to ∥ · ∥s,p (see [55] for
instance).

According to Lemma 24, the functions ∥x∥2s and ∥x∥2p are αs = 2(s −
1)-strongly convex w.r.t. ∥ · ∥p and αp = 2(p − 1)-strongly convex w.r.t.
∥ · ∥q respectively. Hence by the strong convexity / smoothness duality (see
Theorem 3 in [55]) we have that the functions ∥x∥2z and ∥x∥2q are α−1s -smooth
w.r.t. ∥ · ∥z and α−1p -smooth w.r.t. ∥ · ∥q respectively.

By Theorem 13 in [55] we have that the function ∥X∥2z,q is (α−1p +α−1s )-
smooth with respect to the norm ∥ · ∥z,q. Again using the strong convexity /
smoothness duality we have that ∥X∥2s,p is

(
α−1p + α−1s

)−1
=

αpαs
αp+αs

strongly
convex with respect to the norm ∥ · ∥s,p. The first part of the lemma now
follows from applying Lemma 23.

106



Since Bs,p(r) is α = (s−1)(p−1)
(s+p−2)r strongly convex w.r.t. the norm ∥ · ∥s,p,

we have that given X,Y ∈ Bs,p(r), γ ∈ [0, 1] and Z ∈ Rm×n such that
∥Z∥s,p ≤ 1 it holds that

γX + (1− γ)Y +
α

2
γ(1− γ)∥X − Y ∥2s,pZ ∈ Bs,p(r).

Given a matrix Z ′ ∈ Rm×n such that ∥Z ′∥F ≤ 1 we have that

∥α
2
γ(1− γ)∥X − Y ∥2FZ ′∥s,p =

α

2
γ(1− γ)∥x− y∥2F ∥Z ′∥s,p.

Using Lemma 30 we have

∥α
2
γ(1− γ)∥X − Y ∥2FZ ′∥s,p ≤

α

2
γ(1− γ)∥X − Y ∥2s,pn

1
s
− 1

2m
1
p
− 1

2 ∥Z ′∥F

≤ αn
1
s
− 1

2m
1
p
− 1

2

2
γ(1− γ)∥X − Y ∥2s,p.

Hence, Bs,p(r) is αn 1
s
− 1

2m
1
p
− 1

2 = n
1
s
− 1

2m
1
p
− 1

2
(s−1)(p−1)
(s+p−2)r strongly convex

with respect to ∥ · ∥F .

Proof of Lemma 29

Proof. Since by choice of z, q it holds that ∥ · ∥s,p, ∥ · ∥z,q are dual norms, we
have by Holder’s inequality that

X • C ≥ −∥X∥s,p∥C∥z,q ≥ −r∥C∥z,q.

Thus, choosing

Xi,j = −
r

∥C∥q−1z,q ∥Ci∥z−qz

sgn(Ci,j)|Ci,j |z−1,
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we have that

X • C =
∑

i∈[m],j∈[n]

Xi,jCi,j

=
∑

i∈[m],j∈[n]

− r

∥C∥q−1z,q ∥Ci∥z−qz

sgn(Ci,j)|Ci,j |z−1 · Ci,j

=
∑

i∈[m],j∈[n]

− r

∥C∥q−1z,q ∥Ci∥z−qz

|Ci,j |z

=
∑
i∈[m]

− r

∥C∥q−1z,q ∥Ci∥z−qz

∑
j∈[n]

|Ci,j |z

=
∑
i∈[m]

− r

∥C∥q−1z,q ∥Ci∥z−qz

∥Ci∥zz =
∑
i∈[m]

− r

∥C∥q−1z,q

∥Ci∥qz

= − r

∥C∥q−1z,q

∑
i∈[m]

∥Ci∥qz = −
r

∥C∥q−1z,q

∥C∥qz,q = −r∥C∥z,q.

Moreover, for all i ∈ [m] it holds that

∥Xi∥ss =
n∑
j=1

|Xi,j |s =
rs

∥C∥s(q−1)z,q ∥Ci∥s(z−q)z

n∑
i=j

|Ci,j |s(z−1).

Since s = z/(z − 1) we have

∥Xi∥ss =
rs

∥C∥s(q−1)z,q ∥Ci∥s(z−q)z

∥Ci∥zz =
∥Ci∥sq−z(s−1)z

∥C∥s(q−1)z,q

rs

Using z = s/(s− 1) we have that

∥Xi∥ss =
∥Ci∥s(q−1)z

∥C∥s(q−1)z,q

rs.

Thus,

∥Xi∥s =
(
∥Ci∥z
∥C∥z,q

)q−1
r.

Finally, we have that
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∥X∥ps,p =
∑
i∈[m]

∥Xi∥ps =
∑
i∈[m]

(
∥Ci∥z
∥C∥z,q

)p(q−1)
rp

=
∑
i∈[m]

(
∥Ci∥z
∥C∥z,q

)q
rp =

rp

∥C∥qz,q

∑
i∈[m]

∥Ci∥qz = rp.

Thus, X ∈ Bs,p(r).

3.7 Open Problems

The following questions naturally arise. It is known that in case the ob-
jective function is both smooth and strongly convex, projection/prox-based
methods achieve a convergence rate of O(log(1/ϵ)). Is it possible to achieve
such a rate for a conditional gradient-like method in case the feasible set is
strongly convex?

We have shown that it is possible to obtain faster rates for optimization
over balls induced by norms that give rise to strongly convex functions. Is
it possible to obtain faster rates for balls induced by norms that do not give
rise to strongly convex functions, but rather to smooth functions? e.g. is it
possible to obtain faster rates for ℓp balls (and generalizations of) for p > 2?

Finally, the most intriguing question is to give a linear optimization
oracle-based method that enjoys the same convergence rate, at least in terms
of the approximation error, as optimal projection/prox-based gradient meth-
ods, in any regime (including non-smooth problems).
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Chapter 4

Online Learning of
Eigenvectors

Computing the leading eigenvector of a symmetric real matrix is one of
the most important problems in numerical linear algebra and an important
primitive in many algorithms. Perhaps the best known application of this
problem is the Principal Component Analysis problem, in which, roughly
speaking, given a set of high-dimensional vectors, the problem is to find a
low-dimensional subspace such that the projection of the vectors onto this
low-dimensional subspace is close on average to the original vectors. It is
well known that the optimal solution to this problem is to project the high-
dimensional vectors over the several leading eigenvectors of the covariance
matrix of the data.

In this chapter we consider an online learning problem that is a natural
extension of the leading eigenvector problem. A decision maker observes a
sequence of matrices. Before a new matrix is revealed, the decision maker
must commit to a unit vector. Once the matrix is revealed the decision maker
gains the quadratic product of the selected unit vector with the revealed
matrix, and his overall goal is to maximize the total reward. As standard
in such settings, the performance of the decision maker is measured via the
regret which is given by the difference between the total reward of the best
fixed unit vector in hindsight and the total reward of the decision maker.
Indeed the best fixed unit vector in hindsight is simply given by the leading
eigenvector of the sum of revealed matrices and the associated total reward
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is the corresponding leading eigenvalue. This problem captures as a special
case the problem known as Online Principal Component Analysis that was
studied in [90], [91], [74], in case of a single principal component.

From an optimization theory point of view, the offline leading eigenvec-
tor problem is a non-convex quadratic optimization problem, since w.l.o.g.
it requires to maximize a convex function over a non convex set, i.e. the
unit sphere. However, it could be solved to high precision via eigendecom-
position which takes O(n3) time where n is the size of the matrix, or via
iterative approximation algorithms such as the Power or Lanczos algorithms
whose running time for well-conditioned matrices is roughly O(nnz) where
nnz denotes the number of non-zeros entries in the input matrix. When
considering the online problem, three different approaches come to mind
which we now detail.

The Convexification Approach The first approach is to convexify the
problem by lifiting the decision variable from a unit vector to a matrix,
more specifically a positive semidefinite matrix with unit trace. This ap-
proach corresponds to the problem of Online Linear Optimization over the
Spectrahedron 1. This is also the approach taken in previous works on On-
line PCA [90], [91], [74]. While this approach leads to theoretically efficient
algorithms with nearly optimal regret bounds, such as the Matrix Multi-
plicative Weights algorithm [87, 5], their major drawback is that they re-
quire super-linear computation per iteration, i.e. they require to compute
a full eigendcomposition which amounts to O(n3) arithmetic operations per
iteration . The latter is true even if the support of the sequence of matrices
is sparse.

The Oracle-based Approach A natural approach is to try to reduce
the online problem to the offline one. That is, assume that we are given
an oracle for the offline problem that given a query matrix returns its lead-
ing eigenvector, and derive an online algorithm that is based on making
queries to the oracle. Such a reduction is possible either via the Follow the
Perturbed Leader meta-algorithm (FPL) [56] or by the recent Online Frank-
Wolfe algorithm presented in [49]. Both of these algorithms require on each
iteration of the online problem to make a single query to the eigenvector

1formally defined as {X ∈ Rn×n |X ⪰ 0, Tr(X) = 1}.
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oracle which could be implemented using the Power or Lancsoz algorithms
mentioned above with complexity of roughly O(nnz) arithmetic operations.
While the per-iteration complexity of these methods is potentially much
more favorable than the convexification approach and despite the fact that
the regret bound guaranteed by FPL is optimal in terms of the length of the
sequence, it comes with the price of a large dependence on the dimension.
Indeed when designing online learning algorithms, usually the primary goal
is optimal dependence on the sequence length, however favorable depen-
dence on the dimension is crucial in order for the proposed method to be of
any practical significance.

The Iterative Approach A third approach is to design online algorithms
that directly tackle the non-convex optimization problem, i.e. online ana-
logues of iterative algorithms for the offline problem such as the Power
Method with an update step that roughly amounts to computing a sin-
gle matrix-vector product, which is much more efficient than both previous
approaches. Such an approach is reminiscent of the Online Gradient De-
cent method presented in [94] which is an online analogue of the gradient
descent method for offline convex optimization. For the specific problem
of Stochastic Principal Component Analysis, such algorithms with provable
guarantees exist [9], [82], however we are not aware of any such method for
the online setting considered here.

Our interest in this chapter is to study algorithms for the online eigen-
vector problem that may be of use for large scale instances. Towards this
end we part from the convexification approach that was the main approach
studied in previous related problems and requires super-linear computations,
and focus on the oracle-based and iterative approaches which allow for more
efficient implementations and may leverage sparsity in the data.

4.1 Results in this Chapter

Our main result is an online algorithm that takes the so called oracle ap-
proach and is based on the Follow the Perturbed Leader meta-algorithm.
The algorithm requires on each iteration to perform only a single call to
an offline eigenvector oracle and attains near-optimal regret in terms of the
sequence length. In contrast to previous such algorithms, the dependence
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Method Regret It. time
Matrix-MW [87, 5]

√
T n3 (SVD)

FPL - entry-wise uniform noise (sec. 4.4.1) [56] n5/4
√
T EV (dense)

FPL - spectral exp.-dist. noise (sec. 4.4.2)* n
√
T EV (dense)

FPL - gauss. noise (Rank(At) = 1) [29] n1/4
√
T EV (dense)

FPL - gauss. noise (Rank(At) unrestrict.) [59]*
√
nT EV (dense)

Online Frank-Wolfe [49] n1/2T 3/4 EV (dense)
This work, online (section 4.5)

√
nT EV (nnz)

This work, stochastic (section 4.3)
√
T nnz

Table 4.1: Comparison between algorithms in terms of the regret bound and
run-time of a single iteration (dependence on log factors in n, T is omitted).
EV denotes the computation of the leading eigenvector of a given matrix,
where we write “(dense)” in case the EV computation is always carried out
with a dense matrix (≈ n2 non-zero entries), or write “(nnz)” when the EV
computation is carried out in time that depends only on the number of non-
zeros in the data observed so far. Results denoted with * refer to results
that were not available when this work was published. The result in [29]
applies only when all observed matrices are rank-one.

of the obtained regret bound on the dimension is much more favourable.
Moreover, as opposed to previous oracle-based approaches, our algorithm
admits an implementation that may leverage sparsity in the data to further
reduce computation. On the technical side, our algorithm is based on a
novel analysis of FPL. While previous approaches to analyzing the FPL al-
gorithm are geometric in nature, which seems to inevitably introduce a large
dependence on the dimension, our approach exploits the specific structure
of the problem at hand and is algebraic in nature. More precisely, we study
the spectrum of symmetric real matrices under Gaussian rank-one pertur-
bations and apply tools from matrix perturbation theory to derive the regret
bound.

We also consider a somewhat easier stochastic setting, in which we as-
sume that the sequence of matrices is sampled from a fixed and unknown
distribution. We present an algorithm that takes the so called iterative ap-
proach and is analogues to the Power algorithm for the offline setting, i.e.
it computes a single matrix-vector product on each iteration. The regret of

113



the algorithm is nearly optimal in terms of the sequence length and depends
on the dimension only through a logarithmic factor. The analysis of the
algorithm is especially accessible and requires only a black-box application
of the offline Power method and a, by now standard, matrix concentration
inequality.

A comparison of our results to previous related work is detailed in Table
4.1. It can be seen that all previously-known eigenvector computation-based
methods that apply to the full generality of the problem (observed matrices
have arbitrary rank) have a worse dependence on the dimension n and per-
form eigenvector computations on inherently dense matrices, whereas our
method applies eigenvector computations with run-time that depends on
the sparsity of the observed data.

A performance measure that seems natural for comparing between online
algorithms with different regret bounds and iteration complexity is the worst
case overall time complexity to achieve ϵ average (expected) regret. This
measure is important for instance when considering the application of online
learning algorithms to saddle-point optimization problems [38, 19, 33]. The
overall complexity required for the Matrix Mul. Weights method to achieve
ϵ average regret is Õ(n3ϵ−2). Our online algorithm on the other hand ad-
mits an implementation with overall running time Õ(n3/2ϵ−7/2nnz), where
nnz denotes the joint-sparsity of observed matrices (see subsection 4.5.1 for
details). Hence in case ϵ−3/2nnz = Õ(n3/2), it is overall faster.

Finally, we extend our results to handle non-symmetric matrices as well,
and draw some interesting connections to semidefinite optimization and
smoothing of spectral functions.

The rest of this chapter is organized as follows. In Section 4.2 we give
notation, formally define problem of online learning of eigenvectos, and show
how a generalization of the problem - online learning of singular-vectors from
not-necessarily-square matrices, could be reduced to our original problem.
In Section 4.3 we present our algorithm for the stochastic setting and analyze
its performance. In Section 4.4 we overview the follow the perturbed leader
(FPL) meta-algorithm for the online adversarial setting and present old
and new guarantees for it for the online eigenvector problem. In Section
4.5 we present our main result - a new noise distribution for FPL and a
novel regret bound and analysis that are based on a matrix perturbation
theory approach. In section 4.6 we show how to extend these results to also
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handle an adaptive adversary. In Section 4.7 we give applications of our
main technique - eigengap inducing rank-one perturbations to semidefinite
programming and smoothing of spectral functions. Finally, in Section 4.9 we
give complete proofs of supporting lemmas and theorems used throughout
the chapter.

4.2 Preliminaries

4.2.1 Notation

We denote by Sn the linear space of all n× n real symmetric matrices. We
denote by S the Euclidean sphere in Rn, that is S = {x ∈ Rn | ∥x∥2 = 1}.
Given a matrix A ∈ Sn we denote its eigenvalues by λ1(A) ≥ λ2(A) ≥
...λn(A). We also refer to λ1(A) as λmax which is given by λmax = maxx∈S x⊤Ax.
We denote by δ(A) the eigengap of the matrix A which is given by δ(A) =
λ1(A) − λ2(A). Unless specified else, given a vector x ∈ Rn we denote by
∥x∥ its standard Euclidean norm and given a matrix A ∈ Sn we denote by
∥A∥ its spectral norm. We also denote by ∥A∥F and ∥A∥∗ the Frobenius
and nuclear norms of A respectively. Recall that ∥A∥, ∥A∥∗ are dual norms
and thus according to Holder’s inequality, it holds for any two matrices
A,B ∈ Sn that A • B ≤ ∥A∥ · ∥B∥∗ where • denotes the standard inner
product for matrices, that is A •B =

∑
i,j Ai,j ·Bi,j .

4.2.2 Formal definition of the setting

In this chapter we consider the following repeated game: an adversary
chooses a sequence of matrices A1, A2, ..., AT ∈ Sn. Then, for T rounds,
the player is required on each round t ∈ [T ] to choose a vector xt ∈ S.
After making his choice, the matrix At is revealed and the player gains the
profit x⊤t Atxt. Such an adversary is referred to in the literature as oblivious
since he chooses the sequence of matrices without any knowledge of the ac-
tual actions of the player. A stronger type of adversary, known as adaptive
adversary, need not commit in advance to the entire sequence of matrices,
but may choose on time t the matrix At to depend on the entire history of
the game, that is on A1, ..., At−1 and x1, ..., xt−1. Throughout the chapter
(especially in Sections 4.4, 4.5 and unless stated otherwise) we consider only
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an oblivious adversary. In section 4.6 we detail how our results could be
easily extended to also handle an adaptive adversary.

We measure the overall performance of the player according to the regret
which is given by.

regretT = max
x∈S

T∑
t=1

x⊤Atx−
T∑
t=1

x⊤t Atxt

= λmax

(
T∑
t=1

At

)
−

T∑
t=1

x⊤t Atxt.

In case the decision maker uses randomization to choose is actions it also
makes sense to consider the expected regret which is given by

E[regretT ] = max
x∈S

T∑
t=1

x⊤Atx− E[
T∑
t=1

x⊤t Atxt],

where the expectation is taken over the randomness introduced by the de-
cision maker.

We assume without losing generality that ∥At∥ ≤ 1 and that At is pos-
itive definite (note that adding a multiplicity of the identity matrix to At
does not change the regret).

4.2.3 The asymmetric case

It makes sense to also consider the asymmetric case in which the input
matrices A1, ..., AT are not necessarily symmetric but arem×n real matrices
for fixed m,n. In this case a prediction is a rank-one matrix uv⊤ where
u ∈ Rm, v ∈ Rn and both are unit vectors. In this case the regret is given
by

regretT = max
u ∈ Rm, ∥u∥ = 1

v ∈ Rn, ∥v∥ = 1

T∑
t=1

u⊤Atv −
T∑
t=1

u⊤t Atvt

= σmax

(
T∑
t=1

At

)
−

T∑
t=1

u⊤t Atvt,
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where σmax(·) denotes the largest singular value.
We now show how given a low-regret algorithm for the symmetric prob-

lem we can use it to achieve low-regret on the asymmetric problem via a
randomized conversion. The algorithm is given below. The following lemma

Algorithm 9 Asymmetric to Symmetric Conversion Algorithm
1: Input: Algorithm A for the online eigenvector problem in dimension
m× n.

2: for t = 1, ..., T do
3: Receive prediction xt ∈ Rm+n from A.
4: Decompose xt into xt = (ũt, ṽt) for ũt ∈ Rm, ṽt ∈ Rn.
5: With probability 2∥ũt∥∥ṽt∥ set (ut, vt) =

(
ũt
∥ũt∥ ,

ṽt
∥ṽt∥

)
. and with re-

maining probability set (ut, vt) = (u, v), for uniformly chosen unit
vectors u ∈ Rm, v ∈ Rn.

6: Observe At.
7: Feed the matrix Ãt =

(
0m×m At
A⊤t 0n×n

)
to A.

8: end for

bounds the regret of Algorithm 9 in terms of the regret of an algorithm for
the symmetric problem 2. The proof is given in the Section 4.9.

Lemma 31. Assume that for all t ∈ [T ] it holds that ∥At∥ ≤ 1. Then it
holds for all t ∈ [T ] that Ãt is symmetric, ∥Ãt∥ ≤ 1 and

E[σmax

(
T∑
t=1

At

)
−

T∑
t=1

u⊤t Atvt] = λmax

(
T∑
t=1

Ãt

)
−

T∑
t=1

x⊤t Ãtxt,

where the expectation is taken over the randomness in choosing ut, vt.

4.3 The Stochastic Setting

In this section we consider a stochastic setting which is somewhat easier
than the online adversarial setting. In the stochastic setting we assume

2Note that the matrix Ãt defined in the algorithm is not positive definite as we assumed
in the eigenvector problem, however this could be easily fixed by adding a multiplicity of
the identity matrix and scaling accordingly to keep the unit upper bound on the spectral
norm.
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that all matrices A1, A2, ..., AT are sampled i.i.d. from a fixed but unknown
distribution D over matrices in Sn with spectral norm bounded by one and
w.l.o.g. we assume that these matrices are positive definite . We denote the
distribution mean by A = EM∼D[M ].

Our algorithm titled Epoch Power Method for the stochastic setting is
given below. It works by dividing the sequence into disjoint epochs, each of
length ℓ which is a parameter that will be determined in the analysis. The
algorithm predicts using a single unit vector throughout each epoch, while
applying Power method update steps in order to compute the prediction for
the following epoch.

We refer to an epoch by τ and denote by x(τ) the point played throughout
epoch τ . We also denote Ā→(τ) =

1
τℓ

∑τℓ
t=1At, that is the empirical mean of

all matrices observed until the end of epoch τ .
In this section we prove the following theorem.

Theorem 13. Let x1, x2, ..., xT denote the unit vectors played by Algorithm
10 throughout rounds 1, 2, ..., T . The following guarantees hold.

1. Given δ > 0, choosing block length ℓ = ⌈14
√
T log 2nT

δ ⌉ guarantees that
with probability at least 1− δ

T∑
t=1

(
λmax(A)− x⊤t Axt

)
= O

(√
T log nT

δ

)
.

2. Choosing block length ℓ = ⌈14
√
2T log 2nT ⌉ guarantees that

E[λmax

(
T∑
t=1

At

)
−

T∑
t=1

x⊤t Atxt] = O
(√

T lognT
)
.

We note that both results in the theorem are optimal up to log factors.
In what follows we always refer to x(τ) as the final value of this vector,

that is, its value at the end of epoch τ − 1.
In order to prove Theorem 13 we need the following two lemmas.
The following lemma is a straightforward application of a Bernstein con-

centration inequality for symmetric matrices (see [86], Theorem 1.4).
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Algorithm 10 Epoch Power Method
1: Input: block length parameter ℓ.
2: Let v be a unit vector chosen uniformly at random from the sphere.
3: for t = 1, ..., ℓ do
4: Play arbitrarily & observe At.
5: end for
6: x(2) ← v.
7: for τ = 2...⌈T/ℓ⌉ do
8: x(τ+1) ← v.
9: Let Ā→(τ−1) =

1
(τ−1)ℓ

∑(τ−1)ℓ
t=1 At.

10: for t = (τ − 1)ℓ+ 1...min{τℓ, T} do
11: Play x(τ) & observe At.
12: x(τ+1) ← Ā→(τ−1)x(τ+1)/∥Ā→(τ−1)x(τ+1)∥.
13: end for
14: end for

Lemma 32. For any block τ and ϵ > 0 it holds that

Pr
(
∥A− Ā→(τ)∥ ≥ ϵ

)
≤ n exp

(
−ϵ2min{τℓ, T}

16

)
.

The following lemma is based on an analysis of the Power Method for
computing the leading eigenvector of a positive definite matrix and gives a
guarantee on the quality of the vectors x(τ). For details see Theorem 4.1 in
[60].

Lemma 33. For any ⌊Tℓ ⌋ ≥ τ ≥ 2 and ϵ > 0, it holds with probability at
least 1− n exp(−ℓϵ) that

x⊤(τ+1)Ā→(τ−1)x(τ+1) ≥ (1− ϵ)λmax(Ā→(τ−1)).

We can now prove Theorem 13.

Proof. We first prove part 1 of the theorem, part 2 follows as a corollary.
Fix a block number τ ≥ 3 and an error tolerance ϵτ . Using Lemmas 32,

33 we have that with probability at least 1−n exp(−ℓϵτ )−n exp
(
ϵ2τ (τ−2)ℓ

16

)
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that

x(τ)Ax(τ) ≥ x(τ)Ā→(τ−2)x(τ) − ϵτ
≥ λmax(Ā→(τ−2))− 2ϵτ

≥ λmax(A)− 3ϵτ ,

where the first and last inequalities follow from Lemma 32 and the second
inequity follows from Lemma 33 and the observation that λmax(Ā→(τ−2)) ≤
1.

Setting ϵτ = 4

√
log 2nT

δ
(τ−2)ℓ we have that with probability at least

1− n exp

−4
√
ℓ log 2nT

δ

(τ − 2)

− δ

2T

> 1− n exp

−4
√
ℓ2 log 2nT

δ

T

− δ

2T

it holds that

x(τ)Ax(τ) ≥ λmax(A)− 12

√
log 2nT

δ

(τ − 2)ℓ
.

Thus setting the block length to ℓ = ⌈14
√
T log 2nT

δ ⌉ we have that with
probability at least 1− δ

T it holds that

x(τ)Ax(τ) ≥ λmax(A)− 24

√√√√ √
log 2nT

δ

(τ − 2)
√
T
.
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Summing over τ ≥ 3 we have that with probability at least 1− δ,

⌈T/ℓ⌉∑
τ=3

(
x⊤(τ)Ax(τ) − λmax(A)

)
≤ 24

(
log 2nT

δ

T

)1/4 ⌈T/ℓ⌉∑
τ=3

1√
τ − 2

< 24

(
log 2nT

δ

T

)1/4 ∫ T/ℓ

1

1√
τ − 1

dτ

< 48

(
log 2nT

δ

T

)1/4√
T

ℓ

= 48

(
T log 2nT

δ

ℓ2

)1/4

= 24.

Since each block accounts for ℓ iterations and in worst case the algorithm
suffers loss of 1 on all first 2ℓ iterations we have that with probability at
least 1− δ

T∑
t=1

(
λmax(A)− x⊤t Axt

)
≤ 26ℓ = O

(√
T log 2nT

δ

)
. (4.1)

We now prove part 2 of the theorem.
Since on any time t, xt is independent of At we have that

E[max
x∈S

T∑
t=1

x⊤Atx−
T∑
t=1

x⊤t Atxt] ≤

E[max
x∈S

x⊤(T ·A)x+ ∥
T∑
t=1

(At −A)∥ −
T∑
t=1

x⊤t Axt] =

E[T · λmax(A)−
T∑
t=1

x⊤t Axt + ∥
T∑
t=1

(At −A)∥]. (4.2)

Let us denote by τend the index of the last block. Note that ∥
∑T

t=1At −A∥ =
T · ∥Ā→(τend) −A∥. By applying Lemma 32 we have that with probability
at least 1− δ it holds that

1

T
∥
T∑
t=1

At −A∥ = ∥Ā→(τend) −A∥ ≤ 4

√
ln n

δ

T
. (4.3)
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Plugging Eq. (4.1) and Eq. (4.3) into Eq. (4.2) we have that

E[max
x∈S

T∑
t=1

x⊤Atx−
T∑
t=1

x⊤t Atxt] ≤

(1− 2δ) · (4 + 13/2)

√
T log 2nT

δ
+ 2δ · 2T.

Thus setting δ = T−1, which corresponds to setting the block length to
ℓ = ⌈14

√
2T log 2nT ⌉, gives the second part of the theorem.

4.4 The FPL Meta-algorithm for the Online Set-
ting

In this section we overview the Follow the Perturbed Leader meta-algorithm
for online learning and its application to the problem of online learning of
eigenvectors. The meta-algorithm is given below. The algorithm relies on
the availability of an oracle for the offline eigenvector problem, that is an
oracle that given a matrix A, returns a leading eigenvector of A. We denote
a call to this oracle by EV(A). Additionally, the algorithm relies on the
availability of a distribution D over Sn from which it is possible to sample
a perturbation matrix (efficiently). Different such distributions give rise to
different instances of the algorithm with different regret guarantees.

Algorithm 11 Follow the Perturbed Leader
1: Input: distribution D over Sn.
2: Sample a matrix N ∼ D.
3: x1 ← EV(N).
4: for t = 1, 2, ... do
5: Play xt & observe At.
6: xt+1 ← EV

(∑t
τ=1Aτ +N

)
.

7: end for

Theorem 14. The expected regret of algorithm 11 is upper bounded as
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follows.

E[regretT (FPL(D))] ≤
T∑
t=1

EN∼D[x⊤t+1Atxt+1 − x⊤t Atxt]

+ EN∼D[x⊤1 Nx1 − x∗⊤Nx∗]

where x∗ = argmaxx∈S x⊤
(∑T

t=1At

)
x.

The proof is given in Section 4.9.
We now turn to survey two choices for the perturbation-generating dis-

tribution D and their corresponding regret bounds. We show that even
though these distributions give rise to optimal algorithms in terms of the
sequence length T , they suffer from a large dependence on the problem’s
dimension n.

4.4.1 FPL with entry-wise uniform perturbation

Following [56] we consider the following entry-wise uniform distribution
Duni. Each coordinate i ≥ j in the perturbation matrix N is sampled
U[0, 1/ϵ] and for each coordinate i < j we set Ni,j ← Nj,i (in order for the
resulting perturbation to be symmetric).

In [56] it was shown that with such noise distribution, one can bound
the expected regret of a single round t as follows (see proof of Theorem 1.1.
in [56]).

EN∼Duni [x
⊤
t+1Atxt+1 − x⊤t Atxt] ≤ ϵ∥At∥1,

where ∥A∥1 =
∑

i,j |Ai,j |.
Furthermore, since the sampled perturbation is bounded in ℓ∞, using

Holder’s inequality we have that

EN∼Duni [x
⊤
1 Nx1 − x∗⊤Nx∗] ≤ EN∼Duni [∥x1x⊤1 − x∗x∗⊤∥1 · ∥N∥∞]

≤ D1

ϵ
,

where D1 denotes the ℓ1 diameter of the set {xx⊤ |x ∈ S}.
In order to derive the precise regret bound we need to bound both quan-

tities ∥At∥1, D1. The proof of the following lemma is given Section 4.9.
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Lemma 34. It holds that D1 = O(n) and for all t it holds that ∥At∥1 =

O(n3/2). These bounds are also tight.

Plugging the result of the lemma into Theorem 14 and optimizing over
ϵ we have that

E[regretT (FPL(Duni))] = O
(
n5/4
√
T
)
. (4.4)

4.4.2 FPL with exponentially-distributed perturbation

A second distribution that we consider, Dexp, samples from Sn according to
the following density.

dµ(N) ∝ exp(−ϵ∥N∥), (4.5)

for appropriately chosen parameter ϵ.
A similar distribution was used for the problem of learning rotations [51]

(altough in [51] the density was proportional to the nuclear norm and not
the spectral as in Eq. (4.5)). For more details on how to sample from the
distribution specified by Eq. (4.5) as well as a proof of the following lemma,
the reader is referred to [50].

Lemma 35. It holds that ∥N∥ ∼ Gamma(n2, 1/ϵ) and in particular E[∥N∥] =
n2

ϵ .

The following lemma upper bounds the expected regret on a single round
t.

Lemma 36. On any time t ∈ [T ] it holds that

EN∼Dexp [(x⊤t+1Atxt+1 − x⊤t Atx⊤t ] ≤ eϵ.

The proof is given in Section 4.9.
Plugging Lemmas 35, 36 into Theorem 14 and optimizing over ϵ we have

that

E[regretT (FPL(Dexp))] = O
(
n
√
T
)
. (4.6)
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4.5 New Perturbation and Analysis for FPL via
Matrix Perturbation Theory

In this section we present our main result - a new noise distribution for the
FPL algorithm and a corresponding analysis. In contrast to the analysis
used in order to derive the regret bounds in Subsections 4.4.1, 4.4.2, which
relies on geometric considerations and for which a large dependence of the
regret bound on the problem’s dimension n seems unavoidable, here we use a
new analysis idea that is algebraic in nature and relies on tools from matrix
perturbation theory which results in a much more moderate dependence on
the dimension.

The new distribution, denoted Dnew, is based on a single parameter c
and sampling from it is done as follows. We draw a vector v ∈ Rn whose
entries are i.i.d. N (0, 1) random variables and set the perturbation matrix
to N = c · vv⊤.

We prove the following theorem.

Theorem 15. Let c =
√

T
n max{1, ln(T/n)}. Then

E[regretT (FPL(Dnew))] = O(
√
nT max{1, ln (T/n)}).

Aside from the important improvement in the dependence on the dimen-
sion (

√
n in Theorem 15 vs. at least n in Section 4.4), a key difference be-

tween the perturbations is in the efficiency of the resulting implementations.
The key feature of the FPL algorithm for the online eigenvector problem is
that the EV(·) oracle could be implemented using iterative methods such as
the Power or Lanczos methods, that only require to compute matrix-vector
products, to run in time that is typically O(nnz) where nnz denotes the
sparsity of the input matrix. However, since the perturbations considered
in Subsections 4.4.1. 4.4.2 are dense with high probability, even in case the
support of all matrices At is sparse, the call to the oracle EV in Algorithm
11 will be with a dense matrix In contrast, the perturbation considered in
this section is rank-one. Hence, while the perturbation matrix N = cvv⊤ is
still dense with high probability, computing the product of N with a vec-
tor requires only O(n) time which allows for an oracle implementation that
could still benefit computationally from sparsity in the data.

We now turn to prove Theorem 15.
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The following classic result in matrix perturbation theory is known as
the Davis-Kahan Sine Theroem, see [22]. For ease of presentation, we restate
the theorem and give a self-contained proof in Section 4.9.

Theorem 16 (Davis Kahan sine theorem). Let A,B,E ∈ Sn such that
B = A+E and assume that δ(A) > 0. Denote by uA the top eigenvector of
A and by uB the top eigenvector of B. It holds that

∥uAu⊤A − uBu⊤B∥F ≤ 2
√
2
∥E∥
δ(A)

.

The following theorem constitutes the key technical ingredient in the
proof of Theorem 15. It upper bounds the cumulative distribution function
of the eigengap of the perturbed matrix A+ cvv⊤ for a given matrix A.

Theorem 17. Let A ∈ Sn and let v be a vector of independent N (0, 1)

random variables and let c be a positive scalar. Denote B = A+cvv⊤. Then
for any ϵ > 0

Pr(δ(B) ≤ ϵ) ≤ min{2
√
2ϵ

πc
, 1}.

The proof is based on anti-concentration results for the leading eigen-
value of the perturbed matrix. Due to its length and technical detail it is
deferred to Section 4.9. Here for some intuition, we prove a weaker version
of Theorem 17, which captures some of the key ideas.

Lemma 37. [Weaker version of Theorem 17] Let A ∈ Sn and let v be
a vector of independent N (0, 1) random variables and let c be a positive
scalar. Denote B = A+ cvv⊤. Then for any ϵ > 0

Pr(δ(B) ≤ ϵ) ≤
√

2ϵ

πc
.

Proof. Weyl’s eigenvalues inequality states that for any two matrices X,Y ∈
Sn with eigenvalues λ1(X) ≥ λ2(X) ≥ ... ≥ λn(X) and λ1(Y ) ≥ λ2(Y ) ≥
... ≥ λn(Y ) it holds for any i ∈ [n] that

λi(X) + λn(Y ) ≤ λi(X + Y ) ≤ λi(X) + λ1(Y ). (4.7)
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Applying Eq. (4.7) with X = cvv⊤, Y = A and i = 2 gives us that

λ2(B) ≤ λ2(cvv⊤) + λ1(A) = λ1(A),

where the equality follows since vv⊤ is rank-one.
Thus we have that

δ(B) = λ1(B)− λ2(B) ≥ λ1(A+ cvv⊤)− λ1(A).

Let us denote by u1 the eigenvector of A that corresponds to eigenvalue
λ1(A). We continue to lower bound δ(B) as follows.

δ(B) ≥ u⊤1
(
A+ cvv⊤

)
u1 − λ1(A) = c(u⊤1 v)

2.

Since v is a vector of independent N (0, 1) random variables we have that
(u⊤1 v) is also distributed as a N (0, 1) random variable. Thus (u⊤1 v)

2 is a
Chi-squared random variable with a single degree of freedom, also denoted
as χ2

1. If R is a χ2
1 random variable then it holds that for any ϵ > 0

Pr(R ≤ ϵ) =
∫ ϵ

0

e−t/2√
2πt

dt ≤ 1√
2π

∫ ϵ

0

1√
t
dt =

√
2

π
ϵ.

Thus we have that for any ϵ > 0 it holds that

Pr(δ(B) ≤ ϵ) ≤ Pr
(
(u⊤1 v)

2 ≤ ϵ

c

)
≤
√

2ϵ

πc
.

The following lemma is a consequence of Theorem 17. The proof is given
in Section 4.9.

Lemma 38. Given A ∈ Sn let v be a random vector whose entries are
independent N (0, 1) random variables and let c be a positive scalar. Denote
δ = δ(A+ cvv⊤). Define the random variable X = min(a, δ−1) where a is a
given positive constant. Then we have E[X] ≤ 2

√
2

πc max{ln(πeac
2
√
2
), 1}.

We are now ready to prove Theorem 15.
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Proof. Starting from Theorem 14 we have that

E[regretT (FPL(Dnew))] ≤
T∑
t=1

EN∼Dnew [x⊤t+1Atxt+1 − x⊤t Atxt]

+E[x⊤1 Nx1 − x∗⊤Nx∗]

≤
T∑
t=1

E[∥xt+1x
⊤
t+1 − xtx⊤t ∥∗∥At∥] + E[∥N∥]

≤
√
2

T∑
t=1

E[∥xt+1x
⊤
t+1 − xtx⊤t ∥F ] + cE[∥v∥2],

where the second inequality follows from Holder’s inequality and the
third follows from the fact that for any matrix in Sn with k non-zero eigenval-
ues λ1, λ2, ..., λk it holds that ∥A∥2F =

∑k
i=1 λ

2
i ≥ 1

k

(∑k
i=1 |λi|

)2
= 1

k∥A∥
2
∗,

and from our choice of the noise matrix N .
Denote St =

∑t−1
τ=1Aτ . Since for any t, xt is the leading eigenvector

of the matrix (St + N) and xt+1 is the leading eigenvector of the matrix
(St+1 +N) = (St +N) +At, we have by applying Theorem 16 that

E[∥xt+1x
⊤
t+1 − xtx⊤t ∥F ] ≤ E[min{

√
2, 2
√
2
∥At∥

δ(St +N)
}]

≤ 2
√
2E[min{1

2
,

1

δ(St +N)
}],

where the min term is used since obviously ∥xtx⊤t − xt+1x
⊤
t+1∥ is upper

bounded by
√
2. The second inequality follows since ∥At∥ ≤ 1.

Since all entries of v are N (0, 1) random variables it holds that E[∥v∥2] =
n and thus

E[regretT (FPL(Dnew))] ≤
√
2

T∑
t=1

E[min{1
2
,

1

δ(St + cvv⊤)
}] + cn.

Applying the result of Lemma 38 with a = 1
2 for every t gives

E[regretT (FPL(Dnew))] ≤ 2
√
2T · 2

√
2

πc
max{ln( πec

4
√
2
), 1}+ cn.
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Thus setting c =
√

T
n max{ln(T/n), 1} yields the theorem.

4.5.1 Using approximate eigenvector computations

So far we have assumed that the eigenvector oracle used in Algorithm 11
finds an exact leading eigenvector. In practice, it is much more efficient to
use iterative methods such as the Power and Lanczos algorithms to find an
approximate eigenvector. The following theorem states that indeed Algo-
rithm 11 admits such an efficient implementation, without sacrificing the
regret guarantee given in Theorem 15. The proof is given in Section 4.9.

Theorem 18. Algorithm 11, instantiated with noise distribution Dnew, ad-
mits an implementation such that the statement of Theorem 15 holds, and the
worst-case time complexity of each iteration is Õ(n−1/4T 3/4min{nnz, n2}),
where nnz denotes the joint-sparsity of all observed matrices A1, ..., AT .

4.6 Extending the Result of Section 4.5 to Adap-
tive Adversaries

We now turn to consider a slightly more challenging online setting than
considered so far, in which the adversary is not oblivious but adaptive. That
is the sequence of matrices {At}Tt=1 is no longer chosen in advanced and
remains fixed throughout the game, instead, on iteration t, the matrix At
may depend on the the choices of the algorithm on iterations 1, 2, ...t − 1

(that is on the vectors x1, ..., xt−1), but not on any fresh randomness possibly
used by the algorithm on time t.

Unfortunately Theorem 15 does not directly apply to handle an adaptive
adversary since in the analysis we have used the fact that on iteration t, the
matrix At does not depend on the random perturbation N . Luckily, we now
show that it is not hard to modify Algorithm 11 and the analysis of Theorem
15 to also handle an adaptive adversary.

Towards this end, we now consider a slight modification of Algorithm
11 in which on each iteration t we sample a new perturbation matrix Nt =

cvtv
⊤
t from the distribution Dnew, which is chosen independently of previous

perturbations. That is, now on iteration t the algorithm predicts according
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to

x̃t ← EV
(
t−1∑
τ=1

Aτ +Nt

)
, Nt ∼ Dnew. (4.8)

The following theorem bounds the regret of the modified algorithm.

Theorem 19. With probability at least 1− δ it holds that

max
x∈S

T∑
t=1

x⊤Atx−
T∑
t=1

x̃⊤t Atx̃t =

O

(√
nT max{1, ln (T/n)}+

√
T ln 1

δ

)
.

The proof of the theorem follows a known analysis that can be found for
instance in [15]. For the sake completeness we provide one with full detail
here.

Proof. Consider the sequence of vectors x̃1, ..., x̃T generated according to Eq.
(4.8) with respect to a sequence of matrices A1, ..., AT , chosen by an adap-
tive adversary. Consider also a second sequence of unit vectors x1, ..., xT
generated by Algorithm 11, such that only a single sample N is drawn from
the distribution Dnew, when applied to the sequence of matrices A1, ..., AT .
An important observation is that the points x1, ..., xT are chosen as if the
input sequence A1, ..., AT was chosen by an oblivious adversary and in par-
ticular, the single perturbation N used to generate x1, ..., xT is independent
of the matricesA1, ..., AT , N1, ..., NT , where N1, ..., NT are the perturbations
used to generate the vectors x̃1, ..., x̃T according to Eq. (4.8).

By applying Theorem 15 with respect to the sequence of vectors x1, ..., xT
we have that

max
x∈S

T∑
t=1

x⊤Atx− EN [
T∑
t=1

x⊤t Atxt] = O(
√
nT max{1, ln (T/n)}). (4.9)

Further note that for any iteration t, the random matrices N,Nt are
identically distributed and independent of N1, ..., Nt−1, and thus it holds
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that

ENt [x̃⊤t Atx̃t] = EN [x⊤t Atxt]. (4.10)

Let us define for any iteration t the random variable Zt = x̃⊤t Atx̃t −
E[x̃⊤t Atx̃t |N1, ..., Nt−1]. Note that E[Zt |N1, ..., Nt−1] = 0. Thus we have
that

E[
t∑

τ=1

Zτ |N1, ..., Nt−1] = E[
t−1∑
τ=1

Zτ |N1, ..., Nt−1] =
t−1∑
τ=1

Zτ ,

and thus the sequence St :=
∑t

τ=1 Zτ for t ∈ [T ] forms a martingale se-
quence with respect to the random variables N1, ..., NT . This martingale
also satisfies the bounded difference property, since for any t,

|St − St−1| = |Zt| = |x̃⊤t Atx̃t − E[x̃⊤t Atx̃t |N1, ..., Nt−1]| ≤ 1,

where the last inequality follows from our assumption that At ≻ 0 and
∥At∥ ≤ 1.

Thus by applying Azuma’s concentration inequality for martingales, we
have that for any C > 0

Pr(
T∑
t=1

E[x̃⊤t Atx̃t |N1, ..., Nt−1]− x̃⊤t Atx̃t ≥ C) ≤ e−
C2

2T .

By applying Eq. (4.10) for all t we have that

Pr(
T∑
t=1

EN [x⊤t Atxt]− x̃⊤t Atx̃t ≥ C) =

Pr(EN [
T∑
t=1

x⊤t Atxt]−
T∑
t=1

x̃⊤t Atx̃t ≥ C) ≤ 2e−
C2

2T ,

and thus by Eq. (4.9) we have that

Pr(max
x∈S

T∑
t=1

x⊤Atx−
T∑
t=1

x⊤Atx ≥ C +RT ) ≤ 2e−
C2

2T
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where RT = O(
√
nT max{1, ln (T/n)}).

The theorem follows from setting C =
√

2T ln 1
δ .

4.7 Applications to Semidefinite Programming and
Smoothing of Spectral Functions

In this section we briefly detail strong connections between the results pre-
sented in Section 4.5 and semidefinite optimization. In particular we show
that our online algorithm, described in Section 4.5, could be applied to the
problem of Semidefinite Programming (SDP), and that our rank-one per-
turbation and the corresponding Theorem 17 could be applied to smooth
the largest eigenvalue function which shows up in the dual problem to SDP.

Towards this end, let M1, ...,Mm be matrices in Sn and b1, ..., bm be
scalars in R. Consider the following optimization problem:

max
X⪰0,Tr(X)=1

min
i∈[m]

Mi •X − bi, (4.11)

where X ⪰ 0 means that for any vector v ∈ Rn it holds that v⊤Xv ≥ 0, and
Tr(·) is the trace function.

Clearly, Problem (4.11) captures the problem of finding a matrix X ⪰ 0

with unit trace that satisfies all constraints {Mi • Y ≥ bi}mi=1. Note also
that, by standard reductions, w.l.o.g. the constraint Tr(X) = 1 could be
replaced with an arbitrary upper bound on the trace.

The dual of Problem (4.11) is given by the following optimization prob-
lem (see [37] for more details):

min
p∈∆m

λmax

(
m∑
i=1

pi (Mi − biI)

)
, (4.12)

where λmax is the largest (signed) eigenvalue function, i.e. λmax(A) :=

maxx∈S x⊤Ax, and ∆m denotes the probabilistic simplex in Rm, i.e. ∆m =

{x ∈ Rm | ∀i ∈ [m] : xi ≥ 0,
∑m

i=1 xi = 1}. The duality between Problems
(4.11) and (4.12) is strong, in the sense that the optimum of (4.11) equals
the optimum of (4.12).
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4.7.1 Semidefinite programming via online learning

There is a well-known generic approach to apply online-learning algorithms
to solve offline max−min concave-convex optimization problems such as
Problem (4.11). Relevant examples include [44, 3, 37]. This framework,
when applied with the FPL algorithm for the online eigenvector problem
(Algorithm (11)), leads to Algorithm 12, given below. In short, the algo-
rithm applies two online-algorithms for solving Problem 4.11. The primal
algorithm tries to maximize L(X, p) :=

∑m
i=1 pi(Mi •X − bi) as a function

of X (subject to the constraints on X detailed above) whereas, the dual al-
gorithm tries to minimize L(X, p) as a function of p, which is a distribution
over the m constraints. Formally, this is done by applying the primal algo-
rithm to the sequence of linear gain functions L(p)1 (X),L(p)2 (X), ...,L(p)T (X),
where L(p)t (X) :=

∑m
i=1 pt(i)(Mi − biI) • X and pt is the play of the dual

algorithm on iteration t, and the dual algorithm to the sequence of linear
loss functions L(d)1 (p), ...,L(d)T (p), where L(d)t :=

∑m
i=1 pi(Mi • Xt − bi) and

Xt is the play of the primal algorithm on iteration t. Note that this for-
mulation requires that both algorithms can handle an adaptive adversary
(as discussed in Section 4.6), and that the primal algorithm produces plays
in the set {X ∈ Rn×n |X ⪰ 0, Tr(X) = 1}, which is in accordance with
the algorithms studied in this chapter. The dual algorithm is implemented
via the well known multiplicative weights method (MW) (see [4] and also
Definition 1 and Lemma 1 in [37]).

Theorem 20. Suppose that for all i ∈ [m] it holds that ∥Mi∥ ≤ 1 and
|bi| ≤ 1. For T = Õ(nϵ−2), there exists a choice of ηp, ηd such that Algorithm
12 produces with probability at least 1− 1/n a solution X̄ which satisfies

min
i∈[m]

(Mi − biI) • X̄ ≥ OPT − ϵ,

where OPT it the optimal value of Problem (4.11). The algorithm runs in
total time Õ

(
n
ϵ2

(
nnz +

√
n

ϵ3/2
min{nnz, n2}

))
, where nnz denotes the overall

number of non-zeros in the matrices M1, ...,Mm.

Proof. According to Theorem 19 we have that there exists a choice for ηp
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Algorithm 12 Primal-Dual SDP Solver via Online Learning
1: Input: T, ηp, ηd
2: w1 ← 1m
3: Let x1 be a unit vector chosen uniformly at random
4: for t = 1 to T do
5: pt(i)← wt(i)/∥wt∥1
6: vt ∼ N (0n×n, I)
7: xt+1 ← EV

(∑t
τ=1

∑m
i=1 pτ (i)(Mi − biI) + ηpvtv

⊤
t

)
{EV returns the

largest eigenvector; xt+1x
⊤
t+1 corresponds to the matrix Xt+1}

8: for i = 1 to m do
9: wt+1(i) ← wt(i)

(
1− ηd(x⊤t+1Mixt+1 − bi)

)
{multiplicative weights

update rule}
10: end for
11: end for
12: return X̄ = 1

T

∑T
t=1 xtx

⊤
t

such that with probability at least 1− 1/n it holds that

Õ(
√
nT ) = regretT (FPL) = max

x∈S
x⊤

T∑
t=1

m∑
i=1

pt(i)(Mi − biI)x

−
T∑
t=1

x⊤t

m∑
i=1

pt(i)(Mi − biI)xt

≥ T ·OPT −
T∑
t=1

m∑
i=1

pt(i)(x
⊤
t Mixt − bi), (4.13)

where the inequality follows since

max
x∈S

x⊤
T∑
t=1

m∑
i=1

pt(i)(Mi − biI)x = max
X⪰0,Tr(X)=1

T∑
t=1

m∑
i=1

pt(i)(Mi − biI) •X

= T max
X⪰0,Tr(X)=1

1

T

T∑
t=1

m∑
i=1

pt(i)(Mi − biI) •X

= T max
X⪰0,Tr(X)=1

m∑
i=1

p̄(i)(Mi − biI) •X ≥ T ·OPT / p̄ := 1

T

T∑
t=1

pt

According to the MW Lemma (see for instance Lemma 1 in [37]), there
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exists a choice for ηd such that

regretT (MW ) :=

T∑
t=1

m∑
i=1

pt(i)
(
x⊤t Mixt − bi

)
− min
i∈[m]

T∑
t=1

x⊤t Mixt − bi = O(
√
T log(m)). (4.14)

Thus, by combining Eq. (4.13), (4.14) and rearranging we have that
with probability at least 1− 1/n it holds that

min
i∈[m]

T∑
t=1

x⊤t (Mi − biI)xt ≥ T ·OPT − regretT (FPL)− regretT (MW )

= T ·OPT − Õ(
√
nT ).

The bound on the approximation error follows now from dividing through
by T , setting T = Õ(n/ϵ2), and using the definition of X̄.

To bound the run-time, note that all computations required to update
pt on each iteration could be carried out in O(nnz) time. According to
Theorem 18, the update of the primal variable xt on each iteration could be
carried out in Õ(n−1/4T 3/4min{nnz, n2}) time. Plugging in the number of
iterations T , gives the total run-time.

While the run-time stated in Theorem 20 falls behind state-of-the-art
methods such as [37, 21], it already beats eigen-decomposition-based meth-
ods, such as Nesterov’s smoothing approach [72], when nnz is small and ϵ
is large (say a small constant).

The run-time of Algorithm 12 could be further accelerated using random
sampling techniques such as those used in [37] and state-of-the-art stochastic
algorithms for eigenvector computations [36]. Such improvements however
are beyond the scope of this chapter.
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4.7.2 Smoothing the dual SDP problem via rank-one pertur-
bations

Consider now the dual SDP problem given in (4.12) which can be also writ-
ten as follows:

min
p∈∆m

{g(p) := λmax

(
m∑
i=1

p(i)(Mi − biI)

)
}. (4.15)

Suppose we wish to apply first-order gradient methods, such as the well
known projected gradient descent method, to directly solve Problem (4.15).
Unfortunately the function λmax(·) is a non-smooth convex function (and
thus g(p) is not smooth) which means that, using standard analysis, we can
only hope to achieve a convergence rate of roughly 1/

√
ϵ for it. That is, it will

require O(ϵ−2) subgradient descent iterations to achieve an ϵ approximation
to the optimal value. A well known approach to overcome this shortcoming
is by smoothing the function λmax, which in turn, will enable to apply Nes-
terov’s accelerated gradient method, which converges to ϵ-optimal solution
after roughly

√
β/ϵ iterations, where β is the smoothness parameter.

Thus, for the remaining of this section we focus on smoothing techniques
for the function λmax(X).

We first recall the definition of a smooth function.
Definition 10. Let E be a finite-dimensional vector space. We say that a
function f : E→ R is β-smooth with respect to norm ∥ · ∥ if for all x, y ∈ E
it holds that

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥.

In order to better understand why λmax(·) is not smooth and how to
overcome this shortcoming, we have the following lemma, which follows
from Theorem 1.1 and Theorem 1.3 in [66], and shows that the derivative
of λmax(·) is strongly connected to the eigengap of the queried matrix.
Lemma 39. Let X ∈ Sn with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn and denote by
u1, ..., un the corresponding eigenvectors.

1. The function λmax is differential at the point X if and only if δ(X) =

λ1(X) − λ2(X) > 0, and then the gradient is given by ∇λmax(X) =

u1u
⊤
1 .

136



2. The differential set of λmax(·) at point X ∈ Sn 3, denoted ∂λmax(X),
is the convex hull of all rank-one matrices uu⊤ such that u is a unit
vector, and u⊤Xu = λmax(X).

The following lemma gives a well known and popular generic technique
for smoothing based on Gaussian perturbations.

Lemma 40 (Folklore, see for instance Lemma 9 in [25]). Let f : Rn → R
be a convex function with subgradients bounded by L with respect to the
Euclidean norm, i.e. ∀x ∈ Rn ∀y ∈ ∂f(x): ∥y∥2 ≤ L. Consider the function
f̃(x) = Ev∼N (0n,I)[f(x + cv)], where c is some positive scalar. Then, if we
set c = ϵ

L
√
n

, the following claims hold:

1. ∀x ∈ Rn: f(x) ≤ f̃(x) ≤ f(x) + ϵ.

2. f̃(x) is differentiable and O(
√
n/ϵ)-smooth.

3. If v ∼ N (0n, I) then Ev[∇f(x + cv)] = ∇f̃(x), i.e. ∇f(x + cv) is an
unbiased estimator for ∇f̃(x).

Using the second part of Lemma 39, we can see that for any X ∈ Sn and
any Y ∈ ∂λmax(X) it holds that ∥Y ∥F ≤ 1 (since Y is a convex combination
of unit-length rank one matrices). Thus, Lemma 40 gives a smoothing tech-
nique for λmax with smoothness parameter n/ϵ (recall that our linear space
is Sn and not Rn). A problem with the above generic smoothing technique
is that, as Lemma 39 suggests, in our case, in order to compute derivatives
of f̃ (or at least estimate them), we are going to need to perform eigen-
vector computations on matrices of the form X + cN where N is sampled
uniformly from the unit frobenius norm ball in Sn, and is thus dense with
high probability. Thus, even if X is sparse, the eigenvector computations
will be performed on a dense matrix which is highly unfavorable.

We note here that there is also a deterministic smoothing technique for
λmax due to Nesterov [72], but computing the gradient of the smoothed func-
tion requires eigen-decomposition and thus inherently runs in time O(n3).

We are now going to show how using our rank-one perturbation technique
and corresponding analysis, introduced in Section 4.5, can yield a smoothing

3for a non-smooth convex function f , the subdifferential set of f at point x, denoted by
∂f(x), is the set of all vectors y such that for all z ∈ Rn it holds that (x−z)·y ≥ f(x)−f(z).
In case f is differentiable at x, it holds that ∂f(x) = {∇f(x)}.
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of λmax (with roughly the same smoothness parameter), such that comput-
ing derivatives of the smoothed function will depend on the sparsity of the
matrix X, and not explicitly on the dimension.

Towards this end, consider the function

f(X) := Ev∼N (0n×n,I)[λmax(X + cvv⊤)], (4.16)

where c > 0 is a parameter.

Lemma 41. Consider the function f(X) as defined in (4.16) with parameter
c = ϵ/n. Then the following claims hold:

1. ∀X ∈ Sn: 0 ≤ f(X)− λmax(X) ≤ ϵ.

2. With probability 1, f(X) is differentiable and Õ(n/ϵ)-smooth with re-
spect to the frobenius norm.

3. If v ∼ N (0n×n, I) and uX,v is the leading eigenvector of X + cvv⊤

then, with probability 1, Ev[uX,vu⊤X,v] = ∇f(X). Moreover, comput-
ing uX,v could be carried out in time that depends explicitly only on
max{nnz(X), n} and not on n2.

Proof. The first claim holds since for any X ∈ Sn it follows using simple
calculations that

0 ≤ f(x)− λmax(X) = Ev
[
λmax(X + cvv⊤)− λmax(X)

]
≤ Ev

[
λmax(cvv

⊤)
]
= c · n.

For the second claim, using Lemma 6.4 in [21], we can exchange the
order of differentiation and expectation and thus we have that

∇f(X) = Ev∼N (0n×n,I)[∇λmax(X + cvv⊤)]. (4.17)

According to Theorem 17, given a random vector v ∼ N (0n×n, I), it
holds with probability 1 that δ(X+cvv⊤) > 0. Thus, by Lemma 39 we have
that with probability 1, ∇λmax(X + cvv⊤) exists, and thus it follows form
Eq. (4.17) that the derivative exists with probability 1. Thus, we have that
indeed f(X) is differentiable with probability 1.
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To bound the smoothness parameter we proceed as follows. Let X,Y ∈
Sn. Using Eq. (4.17) again, we have that

∥∇f(X)−∇f(Y )∥F = ∥Ev
[
∇λmax(X + cvv⊤)−∇λmax(Y + cvv⊤)

]
∥F

= ∥Ev
[
uX,vu

⊤
X,v − uY,vu⊤Y,v

]
∥F

≤ Ev
[
∥uX,vu⊤X,v − uY,vu⊤Y,v∥F

]
,

where uX,v, uY,v denote the largest eignenvectors of X + cvv⊤, Y + cvv⊤,
respectively (which as discussed before, are unique with probability 1). Note
that the second equality follows again from Lemma 39.

Using the Davis-Kahan Sine Theorem (Theorem 16), we thus have that

∥∇f(X)−∇f(Y )∥F ≤ O(1) · Ev
[
∥X − Y ∥

δ(X + cvv⊤)

]
≤ O(1) · Ev

[
1

δ(X + cvv⊤)

]
∥X − Y ∥F

= Õ(c−1) · ∥X − Y ∥F ,

where the last inequality follows from Lemma 38. Thus, we have proved the
second claim.

Finally, in order to prove the third claim, we can proceed along the same
lines of the proof of the second one: we have that with probability 1,

∇f(X) = Ev∼N (0n×n,I)[∇λmax(X + cvv⊤)] = Ev[uX,vu⊤X,v],

and thus uX,vu⊤X,v is an unbiased estimator for ∇f(X).
Since computing the leading eigenvector uX,v could be carried out via

iterative methods in time that depends on the complexity of multiplying a
vector with the matrix X + cvv⊤ (and not explicitly n2), we have that it
could be carried out in time proportional to max{nnz(X), n}.

We conclude this section by mentioning that a smoothing technique for
λmax which is also based on rank-one perturbations was recently proposed in
[21] (and our proof of Lemma 41 use a certain component of their analysis).
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They consider the following smoothed function:

f̃k(x) := Ev1,v2,...,vk∼N (0n×n,I)

[
max
i∈[k]

λmax(X + cviv
⊤
i )

]
,

where k is a positive integer and c is a positive scalar. That is, they consider
using k independent rank-one perturbations and taking the one that yields
the largest eigenvalue. They show (see Proposition 3.7 in [21]) that for k ≥ 3

and c = ϵ/n, f̃ is indeed a smoothing of λmax with roughly the same smooth-
ing parameter as given in Lemma 41. Quite interestingly, we show that this
smoothing technique works already for k = 1 which greatly simplifies both
the analysis and possible implementations, and is more straightforward.

4.8 Open Questions

The following questions seem of interest. Is it possible to generalize the al-
gorithms presented in this chapter to handle the case in which the prediction
on each iteration is not a rank-one matrix, but a rank-k projection matrix,
for some integer k ≥ 1? A special case of this more general settings setting
is the online PCA problem, studied in [91].

Is it possible to improve the dependence of the regret of the algorithm
presented in Section 4.5 in terms of the dimension? We get a dependence of√
n, while the algorithm in [29] manages to get a dependence of n1/4, but

only in case the observed matrices are rank-one. Also, the algorithm in [29]
uses a fully-dense perturbation and hence the eigenvector computations are
potentially much less efficient than in our algorithms. Thus, the interesting
question is: is it possible to improve the dependence on the dimension in
the regret of our algorithm to n1/4, in the case that the rank of the observed
matrices is arbitrary, while still having the property that the eigenvector
computations depend only on the sparsity of the observed data?

It is also interesting to come up with a lower bound on the regret of
FPL-based algorithms for this problem (which is the natural approach for
a eigenvector computation-based method), so we know exactly how further
down it is possible to push the dependence on the dimension.
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4.9 Proofs of Supporting Lemmas

4.9.1 Proofs of Lemmas from section 4.2

Proof of Lemma 31

Proof. Fix a time t ∈ [T ]. Clearly the matrix Ãt is symmetric. Moreover,
given a unit vector x ∈ Rm×n write x as x = (u, v) where u ∈ Rm and
v ∈ Rn. It holds that

∥Ãtx∥2 = ∥(Atv,A⊤t u)∥2 = ∥Atv∥2 + ∥A⊤t u∥2

= ∥v∥2 · ∥At
v

∥v∥
∥2 + ∥u∥2 · ∥A⊤t

u

∥u∥
∥2

≤ ∥v∥2 + ∥u∥2 = 1,

where the last inequality follows since ∥At∥ ≤ 1. Hence ∥Ãt∥ ≤ 1. We now

turn to bound the regret. It holds that
∑T

t=1 Ãt =

(
0m×m

∑T
t=1At∑T

t=1A
⊤
t 0n×n

)
.

Given a unit vector x ∈ Rm+n, let us write it as before as x = (u, v) where
u ∈ Rm and v ∈ Rn. It holds that

x⊤

(
T∑
t=1

Ãt

)
x = u⊤

(
T∑
t=1

At

)
v + v⊤

(
T∑
t=1

A⊤t

)
u

= 2u⊤

(
T∑
t=1

At

)
v

= 2∥u∥∥v∥ u
⊤

∥u∥

(
T∑
t=1

At

)
v

∥v∥
.

Clearly the RHS is maximized when u, v are in the direction of the top
left and right singular vectors of

∑T
t=1At respectively. Moreover, under the

constraint that ∥x∥ = 1, the rhs is further maximized when ∥u∥ = ∥v∥ = 1√
2
,

in which case it equals exactly σmax
(∑T

t=1At

)
. The maximum of the LHS

with respect to x ∈ S is by definition λmax
(∑T

t=1 Ãt

)
. Thus we have that

λmax

(
T∑
t=1

Ãt

)
= σmax

(
T∑
t=1

At

)
. (4.18)
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Note that for every matrix A ∈ Rm×n, given two unit vectors u ∈ Rm, v ∈
Rn chosen uniformly from the unit spheres in Rm and Rn respectively, it
holds that Eu,v[u⊤Av] = 0. Thus on any time t it holds that

Eut,vt [u⊤t Atvt] = 2∥ũt∥∥ṽt∥
ũ⊤t
∥ũt∥

At
ṽt
∥ṽt∥

+ (1− 2∥ũt∥∥ṽt∥)Eu,v[u⊤Atv]

= 2ũ⊤t Atṽt + (1− 2∥ũt∥∥ṽt∥) · 0

= 2 · 1
2
(ũ⊤t Atṽt + ṽ⊤t A

⊤
t ũt) = x⊤t Ãtxt.

(4.19)

Combining Eq. (4.18) and Eq. (4.19) we have that

E

[
σmax

(
T∑
t=1

At

)
−

T∑
t=1

u⊤t Atvt

]
= λmax

(
T∑
t=1

Ãt

)
−

T∑
t=1

x⊤t Ãtxt.

4.9.2 Proofs of Theorems and Lemmas from section 4.4

Proof of Theorem 14

Proof. Let us consider the noise matrix N as an additional round of the
game, that is assume that A0 = N . In this case, it is clear that playing the
point xt+1 on time t is equivalent to playing the optimal choice with respect
to the cumulative matrix

∑t
τ=0Aτ . In [56] it was shown that this policy, of

playing on each time t the optimal choice with respect to sum of rewards up
to time t (included) achieves over all zero regret. Thus we have that

x⊤1 Nx1 +

T∑
t=1

xt+1Atxt+1 ≥ max
x∈S

x⊤Nx+

T∑
t=1

x⊤Atx

≥ x∗⊤Nx∗ +
T∑
t=1

x∗⊤Atx
∗.
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Subtracting the player’s gain from both sides and rearranging leads to

T∑
t=1

x∗⊤Atx
∗ −

T∑
t=1

x⊤t Atxt ≤

T∑
t=1

(
x⊤t+1Atxt+1 − x⊤t Atxt

)
+ x⊤1 Nx1 − x∗Nx∗.

The result follows from taking expectation on both sides.

Proof of Lemma 34

Proof. In order to upper bound D1 we observe that for any two unit vectors
x, y it holds that

∥xx⊤ − yy⊤∥1 ≤
√
n2∥xx⊤ − yy⊤∥F = O(n).

This upper bound on D1 is also tight. To see this, take the vectors x = e1
(the first n-dimensional standard basis vector) and y = 1√

n
1 (the uniform

unit vector). It holds that ∥xx⊤ − yy⊤∥1 = Ω(n).
To upper bound ∥At∥1 and recalling that ∥At∥ ≤ 1 we do the following.

∥At∥1 ≤
√
n2∥At∥F ≤

√
n2
√
n∥At∥2 ≤ n3/2,

where the second inequality follows since for any symmetric matrix A,
∥A∥2F =

∑n
i=1 λ

2
i (A) ≤ n∥A∥2. We now show that the upper-bound on

∥At∥1 is also tight. To see this, assume with out loss of generality that n
is a power of 2 and consider the famous deterministic construction of an
Hadamard matrix H due to Sylvester. H has the following two properties:
1) ∀i, j : |Hi,j | = 1 and 2) ∥H∥ ≤

√
n. Thus by considering the matrix

At =
1√
n
H we have that ∥At∥1 = 1√

n
n2 = n3/2. There is a slight technical

issue that by defining At this way it is not positive semidefinite. How-
ever this could be easily remedied by adding to it the identity matrix and
multiplying the result by a factor of 1/2 to keep the upper bound on the
spectral norm. This changes still ensure that the ℓ1 norm of the matrix is
Θ(n3/2).
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Proof of Lemma 36

Proof. Let us denote by F (t,M) the function

F (t,M) = [EV(M)]⊤At[EV(M)].

Using the above notation and denoting St =
∑t−1

τ=1Aτ , we have that

EN∼Dexp [(x⊤t+1Atxt+1 − x⊤t Atx⊤t ] =∫
Sn
F (t, St+1 +N ′)dµ(N ′)−

∫
Sn
F (t, St +N)dµ(N) =∫

Sn
F (t, St +N)dµ(N −At)−

∫
Sn
F (t, St +N)dµ(N).

(4.20)

It holds that

dµ(N −At)
dµ(N)

=
exp(−ϵ∥N −At∥)

exp(−ϵ∥N∥)
= exp(−ϵ∥N −At∥+ ϵ∥N∥)
≤ exp(−ϵ∥N −At∥+ ϵ∥N −At∥+ ϵ∥At∥)
= exp(ϵ∥At∥)
≤ exp(ϵ) ≤ 1 + eϵ,

where the last inequality holds for all ϵ ∈ [0, 1].
Plugging the above into Eq. (4.20) we have that

EN∼Dexp [(x⊤t+1Atxt+1 − x⊤t Atx⊤t ] ≤ eϵ

∫
Sn
F (t, Sn +N)dµ(N)

= eϵ · E[x⊤t Atxt].

The lemma follows since ∥At∥ ≤ 1.

4.9.3 Proofs of Theorems and Lemmas from section 4.5

Proof of Theorem 16

Proof. Write uB as uB = αuA+βw for some unit vector w ∈ Rn and scalars
α, β that satisfy: u⊤Aw = 0, α2 + β2 = 1. Note that the following two
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conditions are also satisfied:

1. w⊤Aw ≤ λ2(A) = λ1(A)− δ(A).

2. u⊤AAw = w⊤AuA = 0.

It thus holds that

u⊤BBuB = u⊤BAuB + u⊤BEuB

≤ α2λ1(A) + β2(λ1(A)− δ(A)) + u⊤BEuB

= λ1(A)− β2δ(A) + u⊤BEuB. (4.21)

On the other hand it holds that

u⊤BBu
⊤
B ≥ u⊤ABuA = u⊤AAuA + u⊤AEuA

= λ1(A) + u⊤AEuA. (4.22)

Combining Eq. (4.21) and Eq. (4.22) we have that

∥uAu⊤A − uBu⊤B∥2F = 2(1− (u⊤AuB)
2) = 2β2

≤ 2
u⊤BEuB − u⊤AEuA

δ(A)

≤ 2
∥E∥ · ∥uAu⊤A − uBu⊤B∥∗

δ(A)

≤ 2
√
2
∥E∥ · ∥uAu⊤A − uBu⊤B∥F

δ(A)
,

where the second inequality follows from Holder’s inequality and the last
one follows since uAu⊤A − uBu⊤B is a rank-two matrix.

Thus we have that

∥uAu⊤A − uBu⊤B∥F ≤ 2
√
2
∥E∥
δ(A)

.
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Proof of Lemma 38

Proof. Since X takes only non-negative values we have that

E[X] =

∫ ∞
0

Pr[X ≥ t]dt =
∫ ∞
0

Pr[min(a, δ−1) ≥ t]dt

=

∫ a

0
Pr[min(a, δ−1) ≥ t]dt =

∫ a

0
Pr[δ−1 ≥ t]dt

=

∫ a

0
Pr[δ ≤ 1/t]dt ≤

∫ a

0
min

{
2
√
2

πct
, 1

}
dt, (4.23)

where the last inequality follows from applying Theorem 17.
If a ≤ 2

√
2

πc , we have that

RHS of (4.23) ≤ a ≤ 2
√
2

πc
.

On the other hand, if a > 2
√
2

πc , we have that

RHS of (4.23) ≤
∫ 2

√
2

πc

0
1dt+

∫ a

2
√

2
πc

2
√
2

πct
dt

=
2
√
2

πc
+

2
√
2

πc
ln(aπc/2

√
2)

=
2
√
2

πc
ln(πeac

2
√
2
).

Therefore under both cases, we have

E[X] ≤ RHS of (4.23) ≤ 2
√
2

πc
max{ln(πeac

2
√
2
), 1},

as desired.

Proof of Theorem 17

We prove an equivalent version of Theorem 17 that has a more convenient
scaling.

Theorem 21. For any M ∈ Sn, the perturbed matrix M̃ = M + vvT with
v ∼ N (0, In×n) satisfies that for any t > 0
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Pr
[
δ(M̃) < t

]
≤ 2
√
2

π
t. (4.24)

Theorem 17 follows from invoking Theorem 21 with M = 1
cA and t = ϵ

c .
Although seemingly we need to prove some kind of concentration result,

actually the key idea behind it is the following anti-concentration result for
the top eigenvalue.

Theorem 22. For any M ∈ Sn, any λ > λ1(M) and t > 0 , the perturbed
matrix M̃ =M + vvT with v ∼ N (0, In×n) satisfies,

Pr
[
λ1(M̃) ∈ [λ, λ+ t]

]
≤
√

2t

π
. (4.25)

We first give a high level sketch for the proof of Theorem 21. The basic
idea is as follows: Let E be the bad event that δ(M̃) = λ1(M̃) − λ2(M̃)

is smaller than t. We upperbound the event E by the intersection of two
independent events E1 and E2. Events E1 and E2 come from two consequences
of λ1(M̃) and λ2(M̃) being t-close to each other. Note that by eigenvalue
interlacing, we have that λ2(M̃) ≤ λ1(M) ≤ λ1(M̃). Therefore if E happens,
then we have event (a) σ1(M̃) ≤ λ1(M)+t, and event (b) λ2(M̃) ≥ σ1(M)−
t.

Though events (a) and (b) are not independent, we can carefully design
two independent events E1 and E2 that are closely related to events (a) and
(b), respectively. Event E1 will only depend on correlation between v and
the top eigenvector of M , and event E2 will only depend on correlation of v
between the rest of eigenvectors of M , and therefore they are independent
(see the proof for details), and then we conclude that Pr[E ] ≤ Pr[E1]Pr[E2].
Hence it suffices to upperbound the probabilities of E1 and E2 by O(

√
t) for

the theorem to follow. The bound on Pr[E1] follows from the same arguments
used to prove Lemma 37, i.e. a simple anti-concentration result for the dot
product of a fixed unit vector with a random vector and Pr[E2] is upper
bounded using Theorem 22.

Proof of Theorem 21. Since v has a distribution that is rotational invari-
ant, we can assume, without loss of generality, that M is diagonal. Let
M = diag(λ1, . . . , λd), where λ1, . . . , λn are the eigenvalues and e1, . . . , en
are the corresponding eigenvectors. Define E to be the event that δ(M̃) < t.
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By eigenvalue interlacing, we have that λ2(M̃) ≤ λ1(M) = λ1. Therefore
δ(M̃) ≤ t implies that λ1(M̃) ≤ λ1 + t. Note that λ1(M̃) ≥ e1M̃e1 =

λ1 + ⟨e1, v⟩2 = λ1 + v21. Therefore, λ1(M̃) ≤ λ1 + t further implies that
v21 ≤ t. Let E1 be the event that v21 ≤ t. Therefore we have just proved that
E ⊂ E1. Note that v21 is a Chi-squared random variable with a single degree
of freedom, also denoted as χ2

1, and thus

Pr(v21 < t) =

∫ t

0

e−x/2√
2πx

dx ≤ 1√
2π

∫ t

0

1√
x
dx =

√
2

π
t. (4.26)

We consider defining another event E2 that involves a delicate treatment
for λ2(M̃). Observe that λ1(M̃) ≥ λ1, and therefore when E happens, it
must be λ2(M̃) ≥ λ1(M̃)−t ≥ λ1−t. Using the variational characterization
of eigenvalues (see Lemma 43), by choosing u = e1, we have that

λ2(M̃) ≤ max
x ⊥ e1
∥x∥ = 1

xT M̃x

= max
x′ ∈ Rn−1

∥x′∥ = 1

x
′T
(
diag(λ2, . . . , λn) + v′v′T

)
x′

= λ1
(
diag(λ2, . . . , λn) + v′v′T

)
, (4.27)

where v′ is the n− 1-dimensional vector obtained by restricting v to the
support {2, . . . , n}. Let M ′ = diag(λ2, . . . , λd) and M̃ ′ = diag(λ2, . . . , λn) +
v′v′T . By Eq. (4.27) we have that λ1(M̃ ′) ≥ λ2(M̃) and therefore when E
happens, we have that

λ1(M̃
′) ≥ λ2(M̃) ≥ λ1(M̃)− t ≥ λ1 − t. (4.28)

On the other hand, note that λ1(M̃ ′) = maxx⊥e1, ∥x∥=1 x
T M̃x ≤ λ1(M̃),

therefore when E happens, we also have

λ1(M̃
′) ≤ λ1(M̃) ≤ λ1 + t. (4.29)
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Combining Eq. (4.28) and Eq. (4.29), we now define E2 be the event
that λ1(M̃ ′) ∈ [λ1 − t, λ1 + t], and by the arguments above we have E ⊂ E2.

In case λ1 − t ≤ λ2 we have, as in the analysis of Pr[E1], that

Pr[λ1(M̃ ′) ∈ [λ1 − t, λ1 + t]] ≤ Pr[λ1(M̃ ′) ≤ λ1 + t]

≤ Pr[e⊤2 M̃e2 ≤ λ1 + t]

≤ Pr[λ2 + v22 ≤ λ1 + t]

≤ Pr[v22 ≤ 2t] ≤
√

4

π
t,

where the forth inequality follows since λ1 − t ≤ λ2 and the last inequality
follows from Eq. (4.26).

In case λ1 − t > λ2 we can upper bound Pr[λ1(M̃ ′) ∈ [λ1 − t, λ1 + t]]

by invoking Theorem 22 with parameters M ′, λ1 − t, 2t. In both cases we
conclude that Pr[E2] = Pr[σ1(M̃ ′) ∈ [λ1 − t, λ1 + t]] ≤

√
4t
π .

Finally, note that E1 is an event that only depends on v1 and E2 is an
event that only depends on v2, . . . , vn. Thus E1 and E2 are two independent
events and we conclude Pr[E ] ≤ Pr[E1 ∩ E2] = Pr[E1]Pr[E2] and the theorem
follows.

Now we prove Theorem 22. Before going into detail, let’s sketch the key
idea. We first use the fact that the top eigenvector of a matrix A is the max
root of the polynomial pA(z) = det(zI − A) and obtain that σ1(M̃) is the
max root of the polynomial:

n∑
i=1

v2i
z − λi

= 1, (4.30)

where we assumed as in the proof of Theorem 21, M = diag(λ1, . . . , λd).
We use z∗(v1, . . . , vn) to denote the maximum root of (4.30). We are going
to show that z∗ is pretty sensitive to the choice of v1 in the following sense:
If we fix v2, . . . , vn, and moving v21 from u to u+ t, then z∗ must move from
some place z0 to z0 + t′ with t′ > t. In other words, z∗ should have at least
the same anti-concentration property as v21.

Proof of Theorem 22. As in the proof of Theorem 21, we assume w.l.o.g.
thatM = diag(λ1, . . . , λn). We are going to use the fact that top eigenvector
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of a matrix A is the max root of the polynomial pA(z) = det(zI − A). We
calculate the characteristic polynomial for M̃ :

p
M̃
(z) = det(zI − M̃) = det(zI −M − vvT )

= det
(
(zI −M)(I − (zI −M)−1vv⊤)

)
= det(zI −M) · det(I − (zI −M)−1vvT ),

where the last equality follows since for any two square matrices A,B it holds
that det(AB) = det(A) · det(B). Using Sylvester’s determinant identity
(Lemma 42), we have that

p
M̃
(z) = det(zI −M) · (1− vT (zI −M)−1v)

=

 n∏
j=1

(z − λj)

 · (1− vT diag( 1

z − λi
)v)

=

 n∏
j=1

(z − λj)

 ·(1− n∑
i=1

v2i
z − λi

)

Let f(z) =
∑d

i=1
v2i
z−λi . Since with probability 1 non of the roots of p

M̃
(z)

are in {λ1, λ2, ..., λn}, we have that λ1(M̃) is the largest solution of f(z) = 1.
Note that f(z) is well-defined and decreasing on (λ1,∞). Thus, fixing a value
λ ∈ (λ1,∞), we have that the event that λ1(M̃) ∈ [λ, λ+ t] is equivalent to
both of the following conditions,

f(λ) =

d∑
i=1

v2i
λ− λi

≥ 1, (4.31)

f(λ+ t) =
d∑
i=1

v2i
λ− λi + t

≤ 1. (4.32)

Let

A1 :=
d∑
i=2

v2i
λ− λi
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and

A2 :=

d∑
i=2

v2i
λ− λi + t

Therefore Eq. (4.31) implies that v21
λ−λ1 ≥ 1−A1 and Eq. (4.32) implies

that v21
λ−λ1+t ≤ 1−A2. Let L = (λ−λ1)(1−A1) and U = (λ−λ1+t)(1−A2).

Then it holds that v21 ∈ [L,U ] and U − L = (A1 −A2)(λ− λ1) + t(1−A2).
Our goal will be to show that U − L ≤ t. We bound U − L as follows:

U − L = t(1−A2) + (A1 −A2)(λ− λ1)

= t(1−A2) + (λ− λ1)
d∑
i=2

v2i t

(λ− λi)(λ− λi + t)

≤ t(1−A2) +
d∑
i=2

v2i t

λ− λi + t

≤ t(1−A2) + tA2 = t.

Thus we have that λ1(M̃) ∈ [λ, λ+ t] implies that v21 ∈ [L,L+ t] where
L is a random variable that depends on v2, . . . , vd. Since v1 is independent
of v2, ..., vn and v21 is a Chi-squared random variable with a single degree of
freedom, have that

Pr(v21 ∈ [L,L+ t]) ≤ sup
a∈[0,∞)

Pr(v21 ∈ [a, a+ t])

= sup
a∈[0,∞)

∫ a+t

a

e−t/2√
2πt

dt

≤ sup
a∈[0,∞)

1√
2π

∫ a+t

a

1√
t
dt

=
1√
2π

∫ t

0

1√
t
dt =

√
2

π
t.

Lemma 42 (Sylvester’s Determinant Identity [85]). For any two vectors
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u, v ∈ Rn it holds that

det(I + uvT ) = 1 + vTu.

Lemma 43 (Variational Characterization of Eigenvalues (Courant-Fischer)).
For any symmetric matrix M , it holds that

λ2(M) = inf
u: ∥u∥=1

sup
x⊥u: ∥x∥=1

xTMx

Proof of Theorem 18

Before proving the theorem we need to prove the following lemma.

Lemma 44. Assume that on each iteration t it holds that

x⊤t S̃txt ≥ λmax(S̃t)− ϵ,

where S̃t =
∑t−1

τ=1Aτ+N and ϵ ≤ 2
√
2

πc , for the value of c specified in Theorem
15. Then the statement of Theorem 15 still holds.

Proof. For each iteration t let us denote by x̃t an exact leading eigenvector
of the matrix S̃t. In order to derive the lemma, it suffices to show that

E[
T∑
t=1

x̃⊤t Atx̃t − x⊤t Atxt] = O(
√
nT max{1, ln (T/n)}),

and apply the result of Theorem 15 with respect to the vectors x̃1, ..., x̃T .
Let δt := δ(S̃t). Let us now write xt = αx̃t +

√
1− α2zt for some unit

vector zt ⊥ x̃t and α ∈ [−1, 1]. On the one hand it holds that x⊤t S̃txt ≥
λmax(S̃t)− ϵ. On the other hand it holds that

x⊤t S̃txt = (αx̃t +
√

1− α2zt)
⊤S̃t(αx̃t +

√
1− α2zt)

= α2x̃⊤t S̃tx̃t + (1− α2)z⊤t S̃tzt

≤ λmax(S̃t)− (1− α2)δt.

Thus we have that √
1− α2 ≤ min{1,

√
ϵ

δt
},
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which means that

∥x̃tx̃⊤t − xtx⊤t ∥2F = (1− α2) + 2|α|
√

1− α2 + (1− α2)

≤ 4
√

1− α2 ≤ 4min{1,
√
ϵ

δt
}

= 4
√
ϵmin{ϵ−1/2, δ−1/2t }.

Denote Xt := 4
√
ϵmin{ϵ−1/2, δ−1/2t }. Going along the same lines as in

the proof of Lemma 38, using Theorem 17, we have that

E[Xt] ≤ 4
√
ϵ

∫ ϵ−1/2

0
Pr[δt ≤ 1/t2]dt ≤ 4

√
ϵ

∫ ϵ−1/2

0
min{2

√
2

πct2
, 1}dt,

where c is set according to Theorem 15.

For ϵ−1/2 ≥
√

2
√
2

πc , we have that

E[Xt] ≤ 4
√
ϵ

√2
√
2

πc
+

∫ ϵ−1/2√
2
√

2
πc

2
√
2

πct2
dt


= 4
√
ϵ

√2
√
2

πc
− 2
√
2ϵ

πc
+

2
√
2

πc
·
√

πc

2
√
2


<

8
√

2
√
2ϵ√

πc
.

It now follows that,

E[
T∑
t=1

x̃⊤t Atx̃t − x⊤t Atxt] ≤
T∑
t=1

E[∥x̃tx̃⊤t − xtx⊤t ∥∗∥At∥]

≤
√
2

T∑
t=1

E[∥x̃tx̃⊤t − xtx⊤t ∥F ]

=
√
2

T∑
t=1

E[Xt] = O

(
T

√
ϵ

c

)
= O

(
T

c

)
,
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where the first inequality follows from Holder’s inequality, the second in-
equality follows from the connection between the nuclear and frobenius
norms and the fact that x̃tx̃⊤t − xtx

⊤
t is a rank-two matrix, and the last

equality follows from plugging the upper bound on ϵ.
The lemma now follows from plugging the value of c stated in Theorem

15.

We can now prove Theorem 18.

Proof. According to Lemma 44 it suffices to approximate the leading eigen-
vector of the matrix S̃t on each iteration t up to an error of O(1/c), where c
is as stated in Theorem 15. Using the Lanczos algorithm, such an approxi-
mated eigenvector could be computed in time Õ

(√
λmax(S̃t)c ·min{nnz(S̃t), n2}

)
(see Theorem 4.2 in [60]).

Since λmax(S̃t) = O(T ) and c = Õ(
√
T/n) we conclude that each itera-

tion could be carried out in total time of Õ(n−1/4T 3/4min{nnz, n2}).
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